Introduction to Neuropharmacology

Neuropharmacology

- Study of drugs that alter processes controlled by the nervous system
- Division of neuropharmacological agents – Peripheral Nervous system drugs
 - Central Nervous system drugs

How Neurons Regulate Physiology

- General process
 - Transmission of impulse down axon
 - Release of neurotransmitter from axon terminal
 - Binding of neurotransmitter to receptor on post-synaptic cell
 - Post-synaptic cell changes action
 - Muscle relaxes or contracts
 - Glands secrete or stop secreting
 - Neurons fire more often or less often

Ways we can interfere

- Alter axonal conduction
 Local anesthetics
- Alter synaptic Transmission
- Affect receptors
- If drug causes same effect as natural process: receptor activation
- If drug reduces or causes opposite: receptor deactivation

Steps of Synaptic Transmission

- Transmitter synthesis
- Transmitter Storage (vesicles)
- Release of Transmitter
 Only small number of vesicles release
- Receptor Binding (reversible)
- Termination of Transmission
 - Reuptake
 - Enzymatic degradation
 - Diffusion(slow, usually doesn't happen in vivo)

Transmitter Synthesis

- Drugs can
 - Increase transmitter synthesis
 - Decrease transmitter synthesis
 - Cause synthesis of different transmitter that is more effective than the natural
 - Theoretical: cause synthesis of ineffective transmitter

Storage and Release

Storage: drugs can interfere with storage

 Less transmitter stored → less released

- Transmitter release: drugs can
 - Promote release
 - Inhibit release

Receptor Binding

- Drug can
 - Bind directly to receptors and activate them
 Agonists
 - Bind to receptors and block them
 - Antagonists
 - Bind to receptor and enhance activation by natural transmitter
 - No special name

Termination of Transmitter

- Block Reuptake
 - Reuptake inhibitors
- Inhibition of enzymatic degradation
- Both cause more increased transmitter action

Receptor types and Selectivity

- Drug Selectivity: selectivity of drug for effected receptor
 - Does drug bind to only $\alpha 1$ receptors or does it also bind to $\beta 1$ and $\beta 2$ receptors?
- Physiologic Selectivity: does the receptor do more than one thing? (Is it present in multiple tissues?)
 - $\ \beta 1$ receptors control heart rate, conductivity, and contraction as well as renin release from kidney

Peripheral Neurotransmitters

- Acetylcholine
- Epinephrine
- Norepinephrine
- · Dopamine (kind of)

- Cholinergic Receptors
 - All receptors that mediate responses to acetylcholine
 Muscarinic, Nicotinic-M, Nicotinic-N
- Adrenergic Receptors
 - All receptors that mediate responses to epinephrine and norepinephrine
 Alpha-1, alpha-2, beta-1, beta-2

Overview of Autonomic Functions

- Regulation of Heart
- · Regulation of glands
 - Salivary
 - Gastric
 - Sweat
 - Bronchial
- Regulation of smooth muscle
 - Bronchi, blood vessels, urogenital
 - GI tract

Parasympathetic Functions

- Slow heart
- · Increase gastric secretion and motility
- Emptying Bowel
- Focusing eye for near vision
- Constriction of pupil
- Contraction of bronchial smooth muscle
- Most cholinergic drugs affect: GI, bladder, eye

Sympathetic Functions

- Cardiovascular system
- Body temperature
- Stress: Fight or Flight
 - Increase HR and BP
 - Shunt blood from skin & viscera to muscles
 - Dilation of bronchi
 - Dilation of pupils
 - Mobilization of stored energy: glucose, fatty acids

Control Mechanisms

- Innervation by both where effects are opposed
 - Heart rate
- Innervation by both where effects are complementary
 - Male reproductive processes
- Innervation by only one
 - Blood vessels

Autonomic Tone

- Steady day-to-day influence exerted by the autonomic system
 - Usually only one division provide tone
 - Parasympathetic system usually provides the basal tone

Peripheral Receptor Subtypes

- Cholinergic
 - Nicotinic-N ("n" for neuronal)
 - Nicotinic-M ("m" for muscle)
 - Muscarinic
- Adrenergic
 - Alpha-1
 - Alpha-2
 - Beta-1
 - Beta-2

at all?

- (Dopamine receptors)

- Cholinergic Receptor Function
 Nicotinic-N: promotes ganglionic
 - transmission at all ganglia
 - Nicotinic-M: causes skeletal muscle contraction
 - Muscarinic:
 - Increased gland secretion
 - Contraction of smooth muscle (bronchi, bladder, Gl)
 - Slow heart rate
 - Contraction of iris (miosis) and ciliary (focus)

Adrenergic Receptor Function

Subtypes and Normal Physiology

subtypes, so...Why do we have subtypes

- Maybe we are evolving and will soon produce

- Maybe God designed it that way so we could

· Acetylcholine activates all cholinergic

· Some cholinergic receptors are not

endogenous nicotine?

discover medicine?

attached to any nerve.

- Other reasons?

- · Alpha-1
 - Ocular: mydriasis
 - Blood vessels: vasoconstriction
 - Male genitals: ejaculation
 - Bladder neck and prostate: contraction
- · Alpha-2
 - Located on presynaptic terminal
 - Inhibits release of norepinephrine
 - Located in PNS and CNS

Adrenergic Receptor Function

- · Beta-1
 - Heart: ↑inotropic, chronotropic, dromotropic
 - Kidney: stimulate release of renin
- Beta-2
 - Bronchi: dilation
 - Uterus: relaxation of uterine smooth muscle
 - Arterioles in heart, lungs, skeletal muscle:
 - vasodilation - Glycogenolysis
 - Enhances skeletal muscle contraction

Cholinergic Receptors

Dopamine Receptors

- Primarily in CNS, not PNS
- Only known function of PNS dopamine receptors is
 - Dilation of renal arteries → enhances renal perfusion

Selectivity of Adrenergic Neurotransmitters

Transmitter	Alpha 1	Alpha 2	Beta 1	Beta 2	Dopa
Epinephrine	+	+	+	+	0
Norepinephrine	+	+	+	0	0
Dopamine	+	0	+	0	+

Life Cycle of Acetylcholine

- Synthesized in presynaptic terminal from choline and Acetylcoenzyme A
- · Stored in vesicles and released with AP
- Binds to receptors on postsynaptic cell

 Dissociates
 - Is broken down by acetylcholinesterase on the post-synaptic cell membrane
 - Choline is re-absorbed by neuron to synthesize more ACh

Norepinephrine

- Synthesized in presynaptic terminal from a series of precursors, stored in vesicles
- · Released after action potential
- · Binds to receptors
 - Alpha-2 on the presynaptic neuronAlpha1 or Beta1 on postsynaptic cell
- Reuptake by presynaptic neuron

- Recycled...or

- Broken down by MAO (monamine oxidase)

Lifecycle of Epinephrine

- Synthesized in adrenal medulla by making norepinephrine and then converting it
- · Stored in vesicles in adrenal medulla
- Released into bloodstream after AP
 Travels in blood throughout the body
 - Metabolized by the liver