

Vital Signs

- Classic Vital Signs TPR/BP
 - Temperature
 - Pulse
 - Respirations
 - Blood Pressure
- Additional Vital Signs
 - Height
 - Weight
 - BMI (Kg/m2) or (702Xlbs/in2)
 - Supine, orthostatic BP

Temperature

- Measurement of metabolic activity
 - Core vs Surface
 - Exercise
 - Size Mass to Body surface area
 - Fat deposits insulation
 - Environment
- Location, Location, Location
 - Oral (PO)
 - Ear (Tym)
 - Arm pit (ax)Anal (PR)
- Normal values?

Pulse

- Measurement of Heart Activity
 One aspect of Cardiac Output
 Stroke Volume * Heart Rate
- Rate, regularity, quality
- Locations

 Commonly palpated: Carotid, Radial, Femoral, Posterior Tibial, Dorsal Pedalis
 - Less Common: Ulnar, Antecubital, Popliteal
- Normal Values?

Respiration

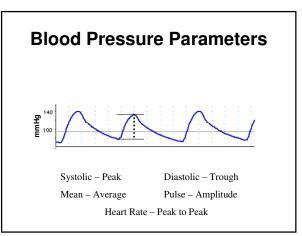
- · More properly ventilation
- Measure of how ease of ventilation and respiratory demand
- · Rate and quality
- · Normal values?

Blood Pressure

- · Surrogate measure for blood flow
- Pressure drives blood flow
 - Necessary to push blood against gravity and keep it moving
 - Only affects arterial pressure
- Venous blood returns due to muscle contraction and valves
- · Generated by heart and arteries

Blood Pressure

- Measurement is only as good as your instrument
- Interpretation is only as good as your theory
- Sphygmomanometers 64% unreliable - 21% inaccurate
- Aneroids 70% unreliable
 - -44% in the hospital setting
 - -61% in private medical


Mion & Pierin, (1998), J Hum Hypertens. 12(4)

Cuff-Based Measurement

- Riva Rocci, 1896
- Korotkoff, 1905
- Theory
 - Blood flow is normally laminar
 - Cuff occludes blood flow
 - Moment blood flow returns, cuff pressure equals arterial pressure
- Usual site of measurement is brachial artery

Direct Measurement

- Intensive Care or Surgery
 - Arterial line direct blood pressure
 - Usually radial pressure
- Cath Lab
 - Ventricular pressure
 - Aortic pressure

JNC VII Recommendations

- 1. Seated, back supported, arms supported at heart level
- 2. Refrain from smoking or ingesting caffeine for at least thirty minutes prior
- 3. Rest for at least five minutes.
- 4. The cuff should be of appropriate size.
- 5. Two or more readings separated by two minutes should be averaged

Sources of error

- Back supported 6.5 mmHg DBP
- Arm Position dependent vs supported 10 mmHG SBP, 12 mmHG DBP
- Auscultatory Gap
- · Aural acuity of clinician
- · Quality of Stethoscope
- · Clinician's bias toward subject
- · Clinician's mood
- · Terminal digit bias

Why should you care?

- 5 mmHg missed (90 95)
 - 21 million people
 - Over next 6 years
 - 125,000 die from CAD
 - Treating these would cause 50,000 saved lives
- 5 mmHg extra (85 90)
 - 27 million falsely hypertensive
 - \$1000 per year per person
 - 27 billion per year

Why should you care cont

- HTN causes 80% of Renal Failure
- Treatment delays RF by 4.5 years
- One year of dialysis costs \$50,000
- Potential savings of \$225,000 per person treated

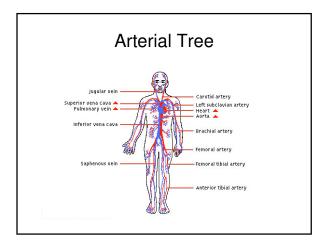
Why should you care cont

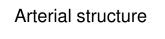
- Seven national surveys had "serious BP measurement errors"
 - Finland
 - Norway
 - United States
 - Australia
 - England

Serious Errors in Surveys

- · Terminal Digit bias
- · Direction bias
- · Falsification of data
- Failure to follow proper protocol for calibration and technique

Defining Resources

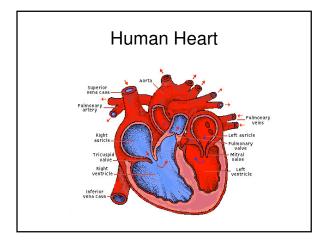

- AHA Human Blood Pressure Determination by Sphygmomanometry
- National High Blood Pressure Education Program – Working Meeting on Blood Pressure Measurement
- National High Blood Pressure Education Program – JNC 7
 - Last 2 are publications of NIH/NHLBI

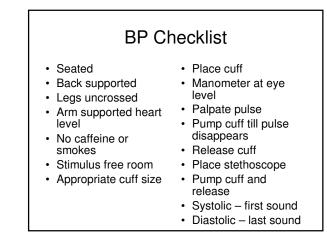

Automated devices

- Auscultatory
 - Electronic Microphone
 - Measures SBP, DBP
- Oscillometric
 - Measures vibration
 - Measures MAP
 - Derives SBP, DBP from algorithm

Blood Pressure Theory

- · Mean arterial pressure
- · Responsible for perfusing body
 - $-BP = CO^{*}TPR$ (Ohm's law)
 - BP = (SV*HR)*TPR (expanded)
 - Ohm's law works **only** for MAP, not SBP or DBP
- MAP estimated from SBP & DBP - (1/3)*SBP + DBP


- Central Arteries
 - Aorta, Carotid
 - Elastic
- Conduit Arteries
- Brachial, Femoral
- Muscular
- Arterioles
 Contractile


Application

- Shock
 - Difficult to diagnose early stages
 - Arterioles compensate for decreased cardiac output
 - Sudden decompensation with little warning
- Central Pressure drops before brachial

Ventricular-Vascular Coupling

- Heart does not pump against all of the body's blood, only against what is in the aorta
 - Aorta stretches to absorb stroke volume
 - When valves close, heart relaxes, then the aorta contracts and blood flows downward
- · Effect
 - Decrease systolic pressure
 - Increase diastolic pressure
 - Hardening of arteries causes opposite effects

Orthostatic Blood Pressure

- Gravity pulls blood downward to legs
 Less blood volume goes to head
 - Arteries contract to compensate
- Lie down, and blood evenly distributes
 Arteries relax to compensate
- Stand up too quickly
 - Get dizzy while arteries contract
 - Normally, takes 1 10 seconds

Orthostatic Blood Pressure Cont

- Take BP while patient is lying down
- Have patient stand up and wait two minutes
- · Take blood pressure again
- Difference of 10mm is considered Orthostatic hypotension

Final Considerations

- First time taking BP on a new patient, take it in both arms
- Compare arm and leg pressures to rule
 out aortic coarctation
- NEVER, EVER take blood pressure in an arm when:
 - Patient has a shunt or port in that arm
 - Patient had a mastectomy on that side