Bacteriostatic Inhibitors of Protein Synthesis

Tetracyclines, Macrolides, Clindamycin, Chloramphenicol, Linezolid, Dalfopristin/Quinipristin, Spectinomycin

Tetracyclines

- Broad spectrum
- All agents similar in terms of action & adverse effects
- · Main differences are pharmacokinetic
- Mechanism of Action
 - Bind to 30S ribosomal subunit and inhibit binding of tRNA to mRNA/ribosome unit
 - Result is inability to add amino acids to proteins

Tetracyclines

- · Resistance
 - Decreased uptake of drug
 - Inactivation
 - Ribosomal protective proteins
- Treatment of Infectious diseases
 - Rickettsial diseases: Rocky Mountain spotted fever, typhus, Q fever
 - Chlamydia trachomitis
 - Brucellosis, cholera, mycoplasm pneumoniae, anthrax

Tetracyclines

- Other uses
 - Acne (low doses only)
 - PUD (Peptic Ulcer Disease)
 - Periodontal Diseases
- Classification
 - Short acting: tetracycline, oxytetracycline
 - Intermediate: Demeclocycline, Methacycline
 - Long acting: Doxycycline, Minocycline

Tetracyclines

- Absorption: PO, Short acting better on an empty stomach; all are bound by calcium supplements, milk, magnesium, iron supplements, most antacids
- Distribution: widely distributed, low CSF
- Elimination: Short and intermediate through kidneys; long acting by liver

Tetracyclines: Adverse Events

- · GI irritation: burning, pain, cramps, NVD
- Bone and Teeth: discolor developing teeth, hypoplasia of enamel; suppress long-bone growth in premature infants
- Suprainfection: pseudomembranous colitis, candida
- · Hepatotoxicity: lethargy and jaundice
- · Renal toxicity
- Photosensitivity

Macrolides

- Mechanism of action: binds to 50S
 ribosomal subunit
- · Broad spectrum
- · All cause GI adverse effects
- · Agents
 - Erythromycin
 - Clarithromycin
 - Azithromycin

Erythromycin

- Legionella
- Diphtheria
- Pertussis
- Chlamydia
- Mycoplasm pneumoniae (atypicals)
- Used as alternative to PCN G with allergy
 Usually for Strep pneumo and pyogenes

Erythromycin: Kinetics

- · PO: four forms, varying doses and absorption
- · Distribution: most tissues other than CSF
- Elimination: 90% hepatic; 10% renal
- Adverse effects
 - GI: pain, NVD (off-label use)
 - Liver injury: caused only by estolate form
- Interaction:
 - Astemizole and terfenadine: dysrhythmias
 - Inhibits Chloramphenicol and Clindamycin
 - Increases: Theophylline, Carbamazepine, Warfarin

Other Macrolides

- · Common: used for CAP and atypicals
 - Clarithromycin: H. pylori; metallic taste; same adverse events and interactions
 - Azithromycin (Z-pack): long half-life; does not inhibit does not inhibit metabolism of other drugs
- Uncommon:
 - Dirithromycin
 - Troleandomycin

Clindamycin

- · Binds to 50S subunit of Ribosome
- Broad Spectrum: Most aerobes (+/-), gram + anaerobes
- Adverse events: Pseudomembranous colitis
- Not as widely used today d/t severity of colitis
- PO, IM, IV (Caution: slow IV infusion only)

Linezolid (Zyvox)

- · New class of antibiotic
- Used for VRE and MRSA
- · Binds to 23S and 50S ribosomal unit
- Spectrum: gram positive
- Adverse events
- Nausea, diarrhea
- PKU with oral dosing
- Myelosuppression
- Mild MAO inhibition: avoid tyramine and sympathomimetics

Rarer Drugs

- Chloramphenicol
 - Potential for Fatal Aplastic Anemia
 Used only when no other viable alternative
- Dalfopristin/Quinupristin

 New class of Drugs (streptogramins)
 MRSA, VR E. faecium
- Spectinomycin: rarely used d/t resistance
- Telithromycin: new drug class (ketolide)
- · Mupirocin: ointment; works on MRSA

Bacteriocidal Inhibitors of Protein Synthesis

Aminoglycosides

General Aminoglycosidology

- Narrow spectrum: primarily aerobic gram negative bacilli
 - Cannot kill anaerobes (oxygen is required for uptake)
- Highly polar:
 - Not absorbed in GI tract
 - Do not enter CSF
 - Rapidly excreted by kidneys

General Aminoglycosidology

- Mechanism: bind to 30S ribosomal subunit
 - Inhibit protein synthesis
 - Production of abnormal proteins
 - Bacteriocidal in high concentrations
 Postantibiotic effect
- Resistance
 - Production of inactivating enzymes

General Aminoglycosidology

- Parenteral use: serious infections d/t gram
 (-) aerobes: esp, Pseudomonas, Enterobacters
- PO: used for local effects in stomach, especially as prep for bowel surgeries
- Topical: Neomycin for skin, ears, eyes; gentamicin and tobramycin for conjunctivitis

General Aminoglycoside Kinetics

- Absorption: Highly polar; little to no GI absorption
- Distribution: mainly extracellular fluid, little CSF; binds to renal tissues (50x higher than serum levels); cross into lymph of inner ear
- · Elimination: kidney
- · Interpatient variation: must monitor levels

General Aminoglycosidology

- Adverse events:
 - Ototoxicity: high trough levels
 - Cochlear: Tinnitus, hearing declineVestibular damage: headache, nausea, vertigo
 - Nephrotoxicity: ATN (cumulative dose)
 - Neuromuscular blockade
 - Neuromuscular blockade
- Interactions
 - PCN mixtureOther ototoxic or nephrotoxic drugs.
 - Skeletal muscle relaxants

General Aminoglycosidology

- · Dosing schedule
 - Divided doses
 - Single daily dose
 - Levels need to drawn at the appropriate time
 - 30 minutes for peak
 - Trough for divided dosing just before next dose
 Trough for single daily dosing 2 and 12 hours

Common Aminoglycosides

- Gentamicin
 - Use: Gram negative bacilli: pseudomas and enterobacters
 - Low cost, but resistance is common
- Tobramycin
 - Similar to gentamicin; more active against pseudomas, less against enterobacter
 - Inhaled version for cystic fibrosis
- Amikacin
 - Broadest action and least likely to be inactivated

Less common Aminoglycosides

- Netilimicin
- Neomycin
- Kanamycin
- Streptomycin: 1st discovered; tuberculosis
- · Paromomycin

Sulfonamides and Trimethoprim

Sulfonamides

- · First systemic antibiotics discovered
- Structurally similar to PABA (a component of folic acid)
- Sulfonamides inhibit bacterial synthesis of folic acid by competing with PABA
- · Spectrum: broad
- · Resistance: common
 - Increased Synthesis of PABA
 - Alteration of folic acid synthesis enzymes
 - Decreased uptake of drug

Sulfonamides

- · Therapeutic use has declined
 - Resistance
 - Toxicity
- · UTI is primary indication
- Kinetics
 - Well absorbed PO
 - Distributed in all tissues
 - Metabolized in liver: become more toxic
 - Excreted in liver

Sulfonamides: Adverse events

- · Older sulfonamides were bad news
 - Newer sulfonamides are less toxic
 - Severe: Stephen-Johnson's syndrome
 25% mortality
 - Systemic epithelial lesions
 - Discontinue if rash appears
 - Avoid in patients with hypersensitivity to thiazides & loop diuretics, and sulfonylureas
- Hemolytic anemia, et al.
- Kernicterus
- Renal damage

Sulfonamides

- · Interactions
 - Intensifies Warfarin, Sulfonlyureas, phenytoin (Dilantin)
- · Agents
 - Sulfamethoxazole: drink lots of water
 - Silver Sulfadiazine

Trimethoprim

- · Not a sulfonamide, but similar action
- Inhibits the step after PABA in folic acid synthesis
- Hardly ever given solo. Almost always with Sulfamethoxazole:
 - TMP-SMZ aka Septra, Bactrim
- Uses
 - UTI
 - Pneumocystis carinii, esp immunocompromise

Fluoroquinolones

- · Broad spectrum antibiotics
- Uses: Pneumonia, UTIs, sinusitis, skin infections, bones, everything
- Mechanism of action
 Inhibition of bacterial DNA gyrase
- Adverse effects
 - GI reactions, dizziness, headache, fatigue, tendon rupture
 - Discontinue if tendon pain

Fluoroquinolones: Interactions

- Cationic substances: aluminum or magnesium antacids, Iron salts, Zinc salts, milk, other dairy products, anything with calcium
 - give quinolone 2 hours before or six hours after
- Theophylline
- Warfarin

Fluoroquinolones

- Common Agents: all PO and IV
 - Ciprofloxacin (Ciprofloxacin)
 First, most resistance
 - Levofloxacin (Levaquin)
 - Moxifloxacin (Avelox) most assocated with tendon rupture

Metronidazole (Flagyl)

- · Protozoal infections and some bacterial
- · Spectrum: anaerobes only
- Mechanism: disrupts DNA
- Uses:
 - Anerobic infections
 - C. diff colitis
 - GI surgery

UTI Drugs

- UTI is most common infection in U.S.
- 25% 35% of women have one per year
- 30% 50% in nursing homes have UTI
- · Location:
 - Urethritis
 - Cystitis
 - Pyelonephritis
 - Prostatitis
- · Complicated vs. Uncomplicated

UTI

- 80% of infections are E. coli
- G(+) cocci account for 10% 15%
- Nosocomial: E. coli only 50%
- Urinary Tract Antiseptics
 - For uncomplicated lower tract only
 - Nitrofurantin: lung and neuro adverse effects
 - Methenamine
 - Nalidixic acid
 - Cinoxacin

Mycobacterium

- Tuberculosis
 - Multidrug therapy: 1st line
 - Isoniazid
 - Rifampin (Rifapentine long acting)
 - Pyrazinamide
 - EthambutolStreptomycin
- Leprosy (Hansen's Disease)
- M. avium complex

Antifungals for Systemic

- Opportunists vs. Nonoppurtunists
- Amphotericin B (Amphoterrible)
 - Highly toxic to humans
 - Broad Spectrum
 - DOC for most systemic Mycoses
 - Infusion reactions and Renal toxicity
 - Binds to sterols in fungal membrane and causes leakage
 - May cause hypokalemia
 - Test dose

-azoles

- *Ketoconazole, *Itraconazole, *Miconazole, Clotrimazole, *Fluconazole, *Voriconazole, Econazole
- *Systemic use
- Strong inhibitors of Cytochrome P-450
- Generally safer than Amphotericin B
- · Some cause hepatotoxicity

Superficial Mycoses

- · Dermatophytes
 - Tinea Capitis ketoconazole shampoo
 - Tinea corporis topical azole or terbinafine
 - Tinea Cruris topical azole
 - Tinea Pedis topical azole
- Candidiasis
 - Vulvovaginal local azole or oral fluconazole
 - Oral nystatin, clotrimazole; severe oral flucon-
- Onychomycosis: nails
 - Oral preferred: terbinafine, itraconazole

Classes for Superficial Mycoses

- Grisefulvin: oral antifungal affects skin only
- · Azoles: oral, creams, suppositories
- Polyene Antibiotics: Nystatin and Amphotericin B topical
- Allyamines: terbinafine (Lamisil) most common
- · Other
 - Tolnaftate, Haloprogin, Ciclopirox

Antivirals: Purine Nucleoside Inhibitors

- Acyclovir
 - Against Hepes Simplex and Varicella-Zoster
 - Topical, Oral, IV
 - Poorly absorbed PO
 - Resistance is extremely rare in nonimmunocompromised patients
- Valacyclovir
 - Pro-drug form of acyclovir
 - Allows IV levels of acyclovir with PO dosing

Purine Nucleoside Inhibitors

- Ganciclovir
 - Used for CMV, only in immunocompromised
 HIV
 - Prevention of CMV in organ transplant
 - Large doses
 - Potentially severe side effects:
 - granulocytopenia, thrombocytopenia
- Valganciclovir
 - Prodrug form

Purine Nucleoside Inhibitors

- · Famciclovir
 - Herpes zoster and genital herpes
 - Well tolerated; PO administration
- Cidofovir
 - Used only for CMV retinitis in HIV patients
- · Penciclovir
 - Topical drug for cold sores

Hepatitis B & C drugs

- Hep B: Vaccine Vaccine Vaccine
- · Interferon alpha: used for both
 - Family of naturally occuring immunomodulators
 - Flu like symptoms
 - Depression, fatigue, alopecia, blood disorders, thyroid dysfunction, heart damage
- Ribavirin: only in combo with Interferon
- Lamivudine: HIV and HepB
- Adefovir: new for HepB

Influenza

- Vaccine: three strains; reformulated q year
 - $-\operatorname{Coverage}$ from 2 weeks to 6 months
 - $-\,70\%$ 90% of young adults become immune
 - Elderly: less efficacy of duration and immunity
 - IM injection or intranasal
- 1st Gen: Amantadine and Rimantidine
 Low activity, high resistance, Type A action
- 2nd Gen: Neuraminidase inhibitors
 - More activity, less resistance, Type A & B
 - Oseltamivir, Zanamivir