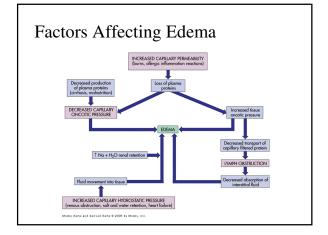

Inflammation and Repair

General Vocabulary words

- · Intracellular space
- · Extracellular space
 - Vascular space
 - Interstitial space
- Read Lewis, 318 319
 - Hydrostatic Pressure
 - Oncotic Pressure
 - Fluid Shifts
- Edema

Lymphatics


- Lymphatic membrane increases in permeability
 - Allows for greater removal of interstitial fluid
 - Allows proteins and other substances into the lymph drainage
 - Possible conduit for spreading infectious or toxic agents

Factors Promoting Edema

- · Increased Hydrostatic pressure
 - Hypertension
 - Fluid Overload (Renal, heart, or liver failure)
 - Increased Venous pressure (PVD, postural blockage)
- Decreased Oncotic Pressure
 - Inhibited Protein production (liver disease, protein malnutrition)
 - Capillary permeability (local inflammation)
- · Lymph obstruction

Factors Inhibiting Edema

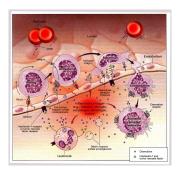
- Hydrostatic Pressure
 - Compression
 - Drugs reducing fluid volume (diuretics)
 - Postural
- · Oncotic Pressure
 - Colloids (natural or artificial albumin)
 - Reduce inflammation

Inflammation

- · Response of surrounding tissue to injury
- Allows substances in blood to enter the tissue (due to increased capillary permeability)
 - Antibodies, Complement, Clotting factors
- Purpose
 - Neutralize and eliminate offending agents
 - Destroy necrosed tissue
 - Prepare tissue for reapir

Features of Acute Inflammation

- Redness (Erythema)
- Heat
- Pain
- · Swelling (Edema)
- Altered Function

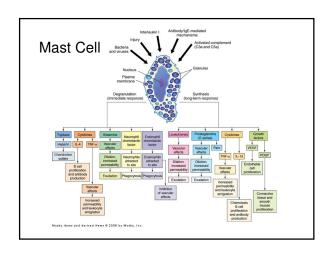

Fluid Mechanism of Inflammation

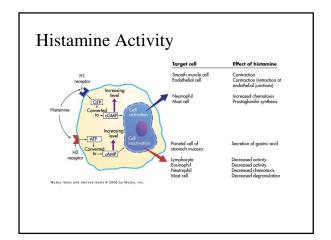
- · Dilation of local arterioles
 - Increased local blood flow and pressure
- Increase in vascular permeability
 - Leakage of protein
- · Viscosity of local blood increases
 - Blood flow slows down
 - Allows white blood cells to enter the site of injury

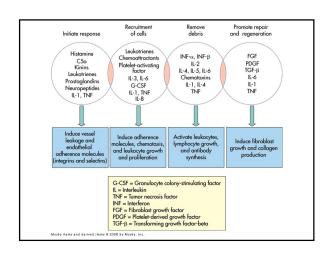
Cellular Aspects of Inflammation

- Margination and emigration (exit lane)
 - Allows leukocytes to exit the blood vessels and enter the inflamed tissue
 - Synonyms: Extravasation, diapedesis
- Chemokines (chemoattractants)
 - Chemicals that attract leukocytes to the site of inflammation
 - Process is called chemotaxis, gradient driven
- · Cytokines
 - Chemicals that alter a cell's function

Chemotaxis and Emigration

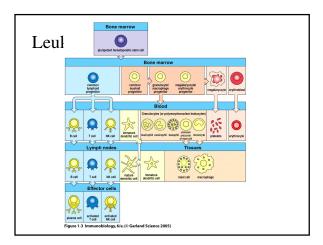



Inflammation vs Immunity


- Inflammation is nonspecific, nonadaptive
- Immunity is specific (to select antigens), adaptive
- Inflammation allows immunity to happen
- Immunity controls inflammation

Mediation of Inflammation

- Vasoactive amines Histamine
- Plasma enzyme products Clotting factors, complement, factor XII (Hageman)
- Arachidonic acid metabolites prostaglandins, thromboxanes, leukotrienes
- Miscellaneous cell products TNF, NO, selectins, integrins, ICAM, VCAM, interleukins



Mediation Vocabulary

- Cytokine substance that affects the way other cells function
- Zymogen inactive storage form of an enzyme or other active substance. Examples:
 - Plasminogen → plasmin
 - Fibrinogen → fibrin
 - Pepsinogen → pepsin

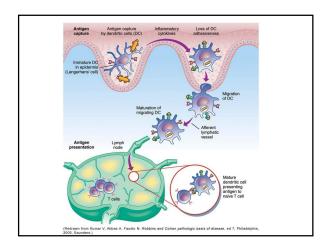
Leukocytes

- Common ancestor bone marrow pluripotent hematopoeitic stem cell
 - Common Lymphoid Progenitor
 - B cells, T cells, Natural Killer Cells
 - Common Myeloid Progenitor
 - Erythrocytes, Macrophages, Granulocytes, Dendritic Cells
- · Progessive differentiation

Monocytes-Macrophages

- · Small quantities in the blood
- · Spend most of their life cycle in Tissues
 - Tissue Macrophages may have other names
 - Liver Kuppfer Cells
 - Nervous system Microglial cells
 - Skin Langerhans
 - Connective Tissue Histiocytes
- Relatively long lived weeks to months

Macrophage Functions


- · Effector cell
- · Phagocytic
- · Antigen Presenting
- Common Pathogen Feature Receptors

 Glucan, mannose, ligands, LPS
- Releases cytokines and chemokines
- · Granuloma multinucleated giant cell

Antigen Processing and Presentation Cytosolic protein Proteoroma Protein Invariant Class II MHC CDI Antigenic Injudes Invariant Class II MHC CDI Invariant

Dendritic Cells

- Not to be confused with dendrites!!!
- Relatively new discovery, 1973
- · Phagocytic and Macropinocytic
 - Digest whatever is digested
 - Recognize digested pathogen features including bacterial DNA, heat shock proteins, and viral RNA
- · Antigen Presenting

Dendritic Cells' Dual Role

- High levels of MHC present antigens to T cells
- At end of life cycle or when activated, migrate to lymph nodes
 - Activate T cells against pathogenic antigens
 - Induce Tolerance to self antigens

Mast Cells

- · Unknown blood precursor
- Granulated cells
 - Known to release at least 16 chemokines and cytokines
 - Best known for Histamine
- · Major function is to activate inflammation
 - Membrane Permeability
 - Leukocyte chemotaxis

Granulocytes

- Named for cytoplasmic granules
 - Neutrophils
 - Basophils
 - Eosinophils

Neutrophils

- · Most numerous
- Shortly lived 6 hour half life in blood
- Phagocytic
- · Primarily attack bacterial invaders
- Bone marrow holds 100 times circulating number of Neutrophils
 - $-\, Segmented \,\, Cells \,\, (segs) fully \,\, mature$
 - Banded Cells (bands) slightly immature
- Neutropenia

Other Granulocytes

- Exocytic
- · Mostly distributed throughout tissues
- Eosinophils
 - Parasites
 - IgE Allergic reactions
- · Basophils
 - Fungus

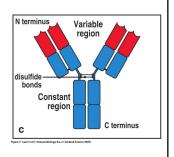
Lymphocytes

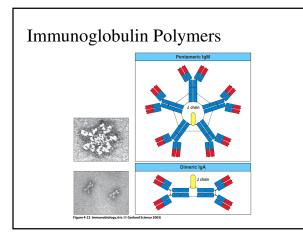
- Immune cells that control and direct inflammation
- Present in small numbers in acute exudates
- Large numbers in chronic inflammation
- Destroy invaders
- · Prepare for tissue reparation

Lymphocytes

- B lymphocyte → Plasma Cell → antibodies
- · T lymphocytes
 - CD8 cells: Cytotoxic (Killer) T Cells kill viral infected cells
 - CD4 cells: Helper T Cells (Types I and II) direct B lymphocytes and macrophages
- (CD8 and CD4 are cell membrane proteins)

Lymphocyte Life Cycle


- Inactive (naïve) lymphocytes circulate through blood and lymph
 - T cells are activated by dendritic cells (and occasionally macrophages)
 - B cells are activated by T cells
- · Once activated, lymphocytes must
 - Proliferate (replicate, multiply, reproduce)
 - Differentiate (mature)
- · Once threat is neutralized
 - Most undergo apoptosis
 - A few remain as Memory Cells

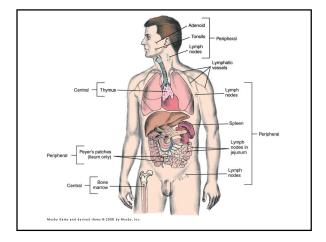

B lymphocytes

- Mature in Bone Marrow (Bone, B, B cell. Get it?)
- Naturally produce IgM antibody and display it on their cell membranes (M for Membrane, get it?)
- Proliferation and Maturation are directed by CD4 T helper cells
- Purpose of maturation is to improve the quality (affinity) of antibody produced

Antibodies

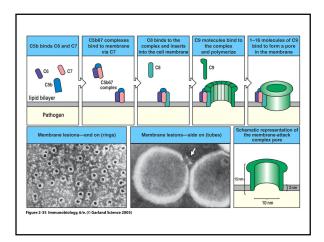
- Immunoglobulin
- · Variable region
 - Somatic hypermutation
- C region
 - Mediates inflammation
- Disulfide bonds can be cleaved

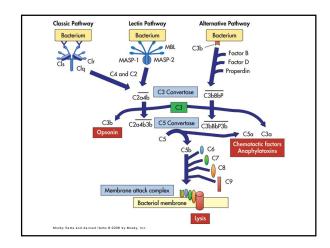
Antibody Function


- · Neutralization
- Opsonization "painting"
- · Activation of inflammation
- · Activation of complement
- Antibody subtypes
 - IgM first produced, low affinity
 - IgD no known function
 - IgA crosses barriers → placenta, milk, eyes
 - IgG opsonin → helps macrophages kill
 - IgE eosinophils → parasites and allergies

T Lymphocytes

- During childhood, T cells migrate to Thymus
 - TCR mutation and tolerance testing
 - Differentiation marked by CD8 and CD4 protein
 - CD8 binds to MHC I and marks Cytotoxic cells
 - CD4 binds to MHC II and marks Helper cells
 - Further differentiate into Helper I and II cells


Activated T Cell Function


- · Cytotoxic cells
 - Virally infected cells present viral antigen via MHC I which binds to CD 8
 - The cytotoxic cell degranulates into the infected cell, killing it
- · Helper cells
 - Direct B cell maturation and Macrophages
 - TH1 are better at directing Macrophages
 - TH2 are better at directing B cells

Complement Cascade

- Consists of 9 zymogens
 C1 C9
- Three activation pathways
- · All end with C3 convertase
- · Cleaves C3 into C3a and C3b
- C5 cleaves into C5a and C5b
- C3b and C5b activate membrane attack complex (MAC)
- C3a and C5a act as cytokines and chemokines

Complement activation pathways

- Classical C1q binds
 - Directly to pathogen
 - -CRP
 - Antibody-Antigen complex
- Mannose Binding Lectin
- Alternative (spontaneous)

Complement Functions

- Kill Pathogens through MAC (puncture them and let the guts spill out)
- · Opsonize pathogens
- Mediate inflammation through C3a and C5a

Basic Immunophysiology

- Three intertwining processes
 - Inflammation
 - Adaptive response
 - Cell mediated
 - Humoral

Non-specific response

- Pathogen recognition
 - Usually begins by recognizing common pathogenic features
 - Initiates inflammatory response
 - Brings effector cells to the site
 - · Walls off infection
 - Prepares tissue for healing

Inflammatory Response

- · Local effects of chemokines and cytokines: especially TNF-α
 - Vasodilation
 - Expression of adhesion molecules
 - Increase in vascular permeability
 - · Leakage of plasma proteins
 - · Clotting factors and complement
 - Blood clot walls off area from blood supply
 - · Allows dendritic cell time to travel to lymph nodes

Inflammatory Response

- Systemic effects TNF-α, IL1-β, IL-6
 - Fever
 - · Inhibits pathogen growth
 - Enhances immune response
 - Protects body from TN- α
 - Acute Phase Response
 - · Acute Phase Proteins released by liver
 - CRP
 - MBL
 - Lung surfactants
 - Leukocytosis
 - ↑ESR

Septic Shock – TNF-α run amok

- TNF-α
 - Vasodilation
 - Increases vascular permeability
 - Induces clotting
- TNF-α escapes into blood
 - Low blood pressure
 - · Vasodilation
 - · Decreased plasma volume from vascular permeability
 - Disseminated clotting

Adaptive Immunity

- Cell Mediated T Cells
 - CD8 Always become cytotoxic T cells
 - -CD4 Must choose to become T_H1 or T_H2
 - T_H1 regulate macrophages
 - Activate macrophagesKill infected macrophages

 - Regulate B cells
 - T_H2 regulate B cells
- Humoral Immunity Antibodies
 - B cells become Plasma cells and produce antibodies

Memory

- · Can take a month for full maturation of Plasma cells
- · Memory cells are fully matured and developed effector cells
 - Quick response to infections
 - Suppress naïve immune cells
 - Do not require co-stimulation

Plasma Cells and Memory

Immunization

- Active activates body's immune system against invaders
 - Goal is formation of Memory cells
- Passive injection of antibodies to offer limited support against an invader

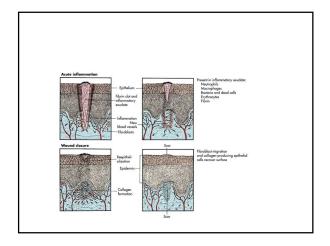
Patterns of Inflammation

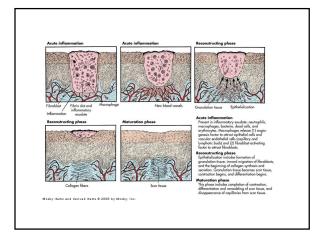
- · Time factor
 - Acute
- Chronic
- · Types of Exudate
- Serous (transudates)
 - Catarrhal (mucus)
- Fibrinous (adhesions)
- Purulent (furuncle, cellulitis)
- Hemorrhagic (hematoma)

Inflammation vs Immunity

Fate of Inflammatory Reaction

- Resolution Little damage
- Repair Moderate to Severe damage
 - Regeneration replacement of parenchyma
 - Scar formation replacement of connective tissue
 - Organization proliferation of nearby connective tissue into the damaged area
 - · Granulation tissue
 - Collagen formation
 - · Loss of vascularity


Inflammatory Phases Celtular injury Acute inflammation (Figure 6-1) Chronic inflammation (Figure 6-21) Granuloma formation (Figure 6-20) Healing (Figure 6-21) Healing (Figure 6-21)


Wound Healing – Primary Intention

- Incision Wound formation
- Fibrin clot prevents bleeding, acts as glue to hold skin together
- · Inflammatory response builds
 - Blood clot dissolved
 - Granulation tissue forms where clot was
 - Epithelium regenerates

Wound Healing Secondary Intention

- · Skin edges cannot be held together
- Similar to primary intention
 - Takes longer
 - Involves more granulation tissue and regeneration
 - May form underneath a scab
 - May show pinpoint bleeding

Factors affecting Inflammation

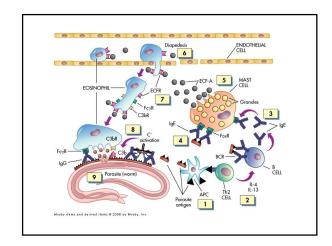
- Blood Supply
 - Elderly, Feet
- · Bone marrow function
- Protein synthesis plasma and repair
 - Liver Function
 - Nutrition
- Medication

Factors Affecting Wound Healing

- · All from slide above
- · Necrotic or foreign tissue in wound
- Wound infection
- Excessive movement
- Dehiscence breaking open of a surgical wound

Dehiscence

Hypersensitivity Reactions

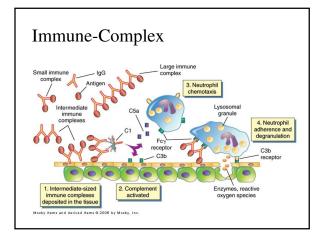

- Damage done to the body as a result of immune reactions
- · Sometimes called allergies
- Four types of reactions
 - I. Anaphylactic
 - II. Cytotoxic
 - III. Immune Complex
 - IV. Cell-mediated

Anaphylactic

- · Previously called immediate
- Requires previous sensitization to antigen
 - IgE is produced
 - IgE embeds in basophils and mast cells
- Upon subsequent exposure
 - Massive amounts of histamine released
 - Vasodilation and increased vascular perm
- Systemic
 - -Laryngeal edema, Bronchospasm, seizures, shock

Common Anaphylactic

- · Insect stings
- Penicillin
- Pollen
- · Animal dander
- Foods
- · Allergic rhinitis
- · Anigoedema and urticaria
- Atopic Dermatitis
- Asthma



Cytotoxic

- · Antibodies bind to antigens on host cells
- · Host cells destroyed by
 - Complement
 - Phagocytes (ADCC)
- · Common Disorders
 - ABO blood rejection
 - Myasthenia gravis

Immune Complex

- Antibody binds with antigen Immune complex
- Immune complex diffuses out of blood into tissue
- Complement cascade activates in the tissue causing inflammation/immune response
- Damage is collateral
- Disorders: serum sickness, SLE, Stevens-Johnson syndrome

Cell-Mediated

- T_H1 cells stimulate Macrophage activity
- Macrophages activity causes tissue damage
 - If antigen is removed, reaction stops
 - If antigen persists, reaction continues and granulomas may form
- Common
 - Allergic dermatitis: poison ivy, detergents, etc.
 - Tissue transplant rejection
 - Tuberculosis

Inflammation Tests

- Erythrocyte Sedimentation Rates
- · C-reactive protein: CRP
 - hs-CRP
- Anti-nuclear antibodies (ANA)
- WBC (with or without differential)
- · Skin tests
- Ig levels

Anti-inflammatory and Anti-immune Drugs

- · Anti-inflammatories
 - Inhibit prostaglandin NSAIDS
 - Inhibit Leukotrienes asthma drugs
 - Inihibt thromboxane antiplatelet drugs
 - Antihistamines
- · Anti-immune
 - Antiproliferative (Calcineurin inhibitors)
 - Cytotoxic
- · Corticosteroids: both, depending on the dose

Calcineurin Inhibitors

- Calcineurin is needed to produce IL-2
- Without IL-2, T-cells cannot proliferate, so cannot mount an immune response
- · Used for transplant graft rejection
- Drugs Cyclosporine: nephrotoxicity, infection
 - Kidney, liver, heart transplant
 - Psoriasis, rheumatoid arthritis
- Tacrolimus (FK506): same

Cytotoxic Drugs

- Kill proliferating B and T cells
- Are non-specific: kill all rapidly dividing cells (red blood cells, skin, epithelial cells)
- · Azathioprine: Adjunct transplant
- · Cyclophosphamide: cancer, SLE, MS
- Methotrexate: cancer, psoriasis, arthritis
- Mycophenolate Mofetil: selective, transplant

Glucocorticoids used for non-

Endocrine purposes

- Pharmacologic Actions
 - Anti-inflammatory and Immune effects
 - Inhibit prostaglandin, leukotriene, and histamine synthesis
 - · Suppress infiltration of phagocytes
 - · Suppress proliferation of lymphocytes
 - Effects on Metabolism and Electrolytes
 - · Glucose levels rise
 - · Protein synthesis suppressed
 - · Fat deposits mobilized
 - Fewer electrolyte effects, but can inhibit calcium absorption

Therapeutic Uses

- · Rheumatoid Arthritis
- SLE
- Inflammatory Bowel Disease (IBD)
- · Miscellaneous Inflammatory D/Os
- Allergic conditions (not acute anaphylaxis)
- Asthma
- Dermatologic disorders
- · Neoplams
- · Transplant rejection
- Preterm infant

Immunosuppressive effect

- · Cause lysis of activated B and T cells
- · Sequester T cells
- Reduce IL-2 production
- Reduce responsiveness to IL-1
- Immunosuppressive doses are large, e.g.
 - Methylprednisolone
 - Anti-immune doses: 500 1500mg (IV) • Anti-inflammatory doses: 5 - 60mg (IV)

Glucorticoids Adverse Effects

- · Adrenal insufficiency
- · Osteoporosis: long term therapy
- Infection
- · Glucose intolerance
- Myopathy
- F&E disturbance
- · Growth retardation
- · Psychological disturbances

Glucorticoids Adverse Effects

- · Cataracts and Glaucoma
- Peptic Ulcer Disease
- · latrogenic Cushing's Disease
- Ischemic Necrosis especially caution with ETOH

Agents

 Short Acting 	Anti-inflammat
 Cortisone, Hydrocortisone 	1
 Intermediate Acting 	
Prednisone	4
Prednisolone	4
Methylprednisolone	5
Triamcinolone	5
 Long acting 	
Betamethasone	20-30
Dexamethasone	20-30