Inflammation and Repair

General Vocabulary words

- Intracellular space
- Extracellular space
 - Vascular space
 - Interstitial space
- Read Lewis, 318 – 319
 - Hydrostatic Pressure
 - Oncotic Pressure
 - Fluid Shifts
- Edema

Capillary Permeability

Factors Promoting Edema

- Increased Hydrostatic pressure
 - Hypertension
 - Fluid Overload (Renal, heart, or liver failure)
 - Increased Venous pressure (PVD, postural blockage)
- Decreased Oncotic Pressure
 - Inhibited Protein production (liver disease, protein malnutrition)
 - Capillary permeability (local inflammation)
- Lymph obstruction

Lymphatics

- Lymphatic membrane increases in permeability
 - Allows for greater removal of interstitial fluid
 - Allows proteins and other substances into the lymph drainage
 - Possible conduit for spreading infectious or toxic agents
Factors Inhibiting Edema

- Hydrostatic Pressure
 - Compression
 - Drugs reducing fluid volume (diuretics)
 - Postural
- Oncotic Pressure
 - Colloids (natural or artificial albumin)
 - Reduce inflammation

Factors Affecting Edema

Inflammation

- Response of surrounding tissue to injury
- Allows substances in blood to enter the tissue (due to increased capillary permeability)
 - Antibodies, Complement, Clotting factors
- Purpose
 - Neutralize and eliminate offending agents
 - Destroy necrosed tissue
 - Prepare tissue for repair

Features of Acute Inflammation

- Redness (Erythema)
- Heat
- Pain
- Swelling (Edema)
- Altered Function

Fluid Mechanism of Inflammation

- Dilation of local arterioles
 - Increased local blood flow and pressure
- Increase in vascular permeability
 - Leakage of protein
- Viscosity of local blood increases
 - Blood flow slows down
 - Allows white blood cells to enter the site of injury

Cellular Aspects of Inflammation

- Margination and emigration (exit lane)
 - Allows leukocytes to exit the blood vessels and enter the inflamed tissue
 - Synonyms: Extravasation, diapedesis
- Chemokines (chemoattractants)
 - Chemicals that attract leukocytes to the site of inflammation
 - Process is called chemotaxis, gradient driven
- Cytokines
 - Chemicals that alter a cell’s function
Chemotaxis and Emigration

Inflammation vs Immunity

- Inflammation is nonspecific, nonadaptive
- Immunity is specific (to select antigens), adaptive
- Inflammation allows immunity to happen
- Immunity controls inflammation

Mediation of Inflammation

- **Vasoactive amines** – Histamine
- **Plasma enzyme products** – Clotting factors, complement, factor XII (Hageman)
- **Arachidonic acid metabolites** – prostaglandins, thromboxanes, leukotrienes
- **Miscellaneous cell products** – TNF, NO, selectins, integrins, ICAM, VCAM, interleukins

Histamine Activity

Mast Cell
Mediation Vocabulary

• Cytokine – substance that affects the way other cells function
• Zymogen – inactive storage form of an enzyme or other active substance. Examples:
 – Plasminogen → plasmin
 – Fibrinogen → fibrin
 – Pepsinogen → pepsin

Leukocytes

• Common ancestor – bone marrow pluripotent hematopoietic stem cell
 – Common Lymphoid Progenitor
 • B cells, T cells, Natural Killer Cells
 – Common Myeloid Progenitor
 • Erythrocytes, Macrophages, Granulocytes, Dendritic Cells
• Progressive differentiation

Macrophage Functions

• Effector cell
• Phagocytic
• Antigen Presenting
• Common Pathogen Feature Receptors
 – Glucan, mannose, ligands, LPS
• Releases cytokines and chemokines
• Granuloma – multinucleated giant cell

Monocytes-Macrophages

• Small quantities in the blood
• Spend most of their life cycle in Tissues
 – Tissue Macrophages may have other names
 • Liver – Kupffer Cells
 • Nervous system – Microglial cells
 • Skin – Langerhans
 • Connective Tissue – Histiocytes
• Relatively long lived – weeks to months

Antigen Processing and Presentation
Dendritic Cells

- **Not to be confused with dendrites!!!**
- Relatively new discovery, 1973
- Phagocytic and Macropinocytic
 - Digest whatever is digested
 - Recognize digested pathogen features including bacterial DNA, heat shock proteins, and viral RNA
- Antigen Presenting

Dendritic Cells' Dual Role

- High levels of MHC – present antigens to T cells
- At end of life cycle or when activated, migrate to lymph nodes
 - Activate T cells against pathogenic antigens
 - Induce *Tolerance* to self antigens

Mast Cells

- Unknown blood precursor
- Granulated cells
 - Known to release at least 16 chemokines and cytokines
 - Best known for Histamine
- Major function is to activate inflammation
 - Membrane Permeability
 - Leukocyte chemotaxis

Granulocytes

- Named for cytoplasmic granules
 - Neutrophils
 - Basophils
 - Eosinophils

Neutrophils

- Most numerous
- Shortly lived – 6 hour half life in blood
- Phagocytic
- Primarily attack bacterial invaders
- Bone marrow holds 100 times circulating number of Neutrophils
 - Segmented Cells (segs) – fully mature
 - Banded Cells (bands) – slightly immature
- Neutropenia
Other Granulocytes
- Exocytic
- Mostly distributed throughout tissues
- Eosinophils
 - Parasites
 - IgE Allergic reactions
- Basophils
 - Fungus

Lymphocytes
- Immune cells that control and direct inflammation
- Present in small numbers in acute exudates
- Large numbers in chronic inflammation
- Destroy invaders
- Prepare for tissue reparation

Lymphocyte Life Cycle
- Inactive (naive) lymphocytes circulate through blood and lymph
 - T cells are activated by dendritic cells (and occasionally macrophages)
 - B cells are activated by T cells
- Once activated, lymphocytes must
 - Proliferate (replicate, multiply, reproduce)
 - Differentiate (mature)
- Once threat is neutralized
 - Most undergo apoptosis
 - A few remain as Memory Cells

Antibodies
- Immunoglobulin
- Variable region
 - Somatic hypermutation
- C region
 - Mediates inflammation
- Disulfide bonds can be cleaved

B lymphocytes
- Mature in Bone Marrow (Bone, B, B cell. Get it?)
- Naturally produce IgM antibody and display it on their cell membranes (M for Membrane, get it?)
- Proliferation and Maturation are directed by CD4 T helper cells
- Purpose of maturation is to improve the quality (affinity) of antibody produced
Immunoglobulin Polymers

Antibody Function
- Neutralization
- Opsonization – “painting”
- Activation of inflammation
- Activation of complement
- Antibody subtypes
 - IgM – first produced, low affinity
 - IgD – no known function
 - IgA – crosses barriers → placenta, milk, eyes
 - IgG – opsonin → helps macrophages kill
 - IgE – eosinophils → parasites and allergies

T Lymphocytes
- During childhood, T cells migrate to Thymus
 - TCR mutation and tolerance testing
 - Differentiation marked by CD8 and CD4 protein
 - CD8 binds to MHC I and marks Cytotoxic cells
 - CD4 binds to MHC II and marks Helper cells
 - Further differentiate into Helper I and II cells

Activated T Cell Function
- Cytotoxic cells
 - Virally infected cells present viral antigen via MHC I which binds to CD 8
 - The cytotoxic cell degranulates into the infected cell, killing it
- Helper cells
 - Direct B cell maturation and Macrophages
 - TH1 are better at directing Macrophages
 - TH2 are better at directing B cells

Complement Cascade
- Consists of 9 zymogens
 - C1 – C9
- Three activation pathways
- All end with C3 convertase
- Cleaves C3 into C3a and C3b
- C5 cleaves into C5a and C5b
- C3b and C5b activate membrane attack complex (MAC)
- C3a and C5a act as cytokines and chemokines
Complement activation pathways

- Classical - C1q binds
 - Directly to pathogen
 - CRP
 - Antibody-Antigen complex
- Mannose Binding Lectin
- Alternative (spontaneous)

Complement Functions

- Kill Pathogens through MAC – (puncture them and let the guts spill out)
- Opsonize pathogens
- Mediate inflammation through C3a and C5a

Basic Immunophysiology

- Three intertwining processes
 - Inflammation
 - Adaptive response
 - Cell mediated
 - Humoral
- Non-specific response

- Pathogen recognition
 - Usually begins by recognizing common pathogenic features
 - Initiates inflammatory response
 - Brings effector cells to the site
 - Walls off infection
 - Prepares tissue for healing
Inflammatory Response

- Local effects of chemokines and cytokines: especially TNF-α
 - Vasodilation
 - Expression of adhesion molecules
 - Increase in vascular permeability
 - Leakage of plasma proteins
 - Clotting factors and complement
 - Blood clot walls off area from blood supply
 - Allows dendritic cell time to travel to lymph nodes

- Systemic effects – TNF-α, IL1-β, IL-6
 - Fever
 - Inhibits pathogen growth
 - Enhances immune response
 - Protects body from TN-α
 - Acute Phase Response
 - Acute Phase Proteins released by liver
 - CRP
 - MBL
 - Lung surfactants
 - Leukocytosis
 - ↑ESR

Septic Shock – TNF-α run amok

- TNF-α
 - Vasodilation
 - Increases vascular permeability
 - Induces clotting
- TNF-α escapes into blood
 - Low blood pressure
 - Vasodilation
 - Decreased plasma volume from vascular permeability
 - Disseminated clotting

Adaptive Immunity

- Cell Mediated – T Cells
 - CD8 – Always become cytotoxic T cells
 - CD4 – Must choose to become T_{H1} or T_{H2}
 - T_{H1} regulate macrophages
 - Activate macrophages
 - Kill infected macrophages
 - Regulate B cells
 - T_{H2} regulate B cells
- Humoral Immunity – Antibodies
 - B cells – become Plasma cells and produce antibodies

Memory

- Can take a month for full maturation of Plasma cells
- Memory cells are fully matured and developed effector cells
 - Quick response to infections
 - Suppress naïve immune cells
 - Do not require co-stimulation

Plasma Cells and Memory

- Log of antibody titre
- Primary response
- Secondary response
- First exposure to antigen
- Subsequent exposure to some antigen
- Relative time after exposure
Immunization

- Active – activates body’s immune system against invaders
 - Goal is formation of Memory cells
- Passive – injection of antibodies to offer limited support against an invader

Patterns of Inflammation

- Time factor
 - Acute
 - Chronic
- Types of Exudate
 - Serous (transudates)
 - Catarrhal (mucus)
 - Fibrinous (adhesions)
 - Purulent (furuncle, cellulitis)
 - Hemorrhagic (hematoma)

Inflammation vs Immunity

Fate of Inflammatory Reaction

- Resolution – Little damage
- Repair – Moderate to Severe damage
 - Regeneration – replacement of parenchyma
 - Scar formation – replacement of connective tissue
 - Organization – proliferation of nearby connective tissue into the damaged area
 - Granulation tissue
 - Collagen formation
 - Loss of vascularity

Inflammatory Phases

Wound Healing – Primary Intention

- Incision – Wound formation
- Fibrin clot – prevents bleeding, acts as glue to hold skin together
- Inflammatory response builds
 - Blood clot dissolved
 - Granulation tissue forms where clot was
 - Epithelium regenerates
Wound Healing
Secondary Intention

- Skin edges cannot be held together
- Similar to primary intention
 - Takes longer
 - Involves more granulation tissue and regeneration
 - May form underneath a scab
 - May show pinpoint bleeding

Factors affecting Inflammation

- Blood Supply
 - Elderly, Feet
- Bone marrow function
- Protein synthesis – plasma and repair
 - Liver Function
 - Nutrition
- Medication

Factors Affecting Wound Healing

- All from slide above
- Necrotic or foreign tissue in wound
- Wound infection
- Excessive movement
- Dehiscence – breaking open of a surgical wound

Dehiscence
Hypersensitivity Reactions

• Damage done to the body as a result of immune reactions
• Sometimes called allergies
• Four types of reactions
 I. Anaphylactic
 II. Cytotoxic
 III. Immune Complex
 IV. Cell-mediated

Anaphylactic

• Previously called immediate
• Requires previous sensitization to antigen
 – IgE is produced
 – IgE embeds in basophils and mast cells
• Upon subsequent exposure
 – Massive amounts of histamine released
 – Vasodilation and increased vascular perm
• Systemic
 – Laryngeal edema, Bronchospasm, seizures, shock

Common Anaphylactic

• Insect stings
• Penicillin
• Pollen
• Animal dander
• Foods
• Allergic rhinitis
• Anigoedema and urticaria
• Atopic Dermatitis
• Asthma

Cytotoxic

• Antibodies bind to antigens on host cells
• Host cells destroyed by
 – Complement
 – Phagocytes (ADCC)

• Common Disorders
 – ABO blood rejection
 – Myasthenia gravis

Immune Complex

• Antibody binds with antigen – Immune complex
• Immune complex diffuses out of blood into tissue
• Complement cascade activates in the tissue causing inflammation/immune response
• Damage is collateral
• Disorders: serum sickness, SLE, Stevens-Johnson syndrome
Immune-Complex

Cell-Mediated

- T_{H1} cells stimulate Macrophage activity
- Macrophages activity causes tissue damage
 - If antigen is removed, reaction stops
 - If antigen persists, reaction continues and granulomas may form
- Common
 - Allergic dermatitis: poison ivy, detergents, etc.
 - Tissue transplant rejection
 - Tuberculosis

Inflammation Tests

- Erythrocyte Sedimentation Rates
- C-reactive protein: CRP
 - hs-CRP
- Anti-nuclear antibodies (ANA)
- WBC (with or without differential)
- Skin tests
- Ig levels

Anti-inflammatory and Anti-immune Drugs

- Anti-inflammatory
 - Inhibit prostaglandin – NSAIDS
 - Inhibit Leukotrienes – asthma drugs
 - Inhibit thromboxane – antiplatelet drugs
 - Antihistamines
- Anti-immune
 - Antiproliferative (Calcineurin inhibitors)
 - Cytotoxic
- Corticosteroids: both, depending on the dose

Calcineurin Inhibitors

- Calcineurin is needed to produce IL-2
- Without IL-2, T-cells cannot proliferate, so cannot mount an immune response
- Used for transplant graft rejection
- Drugs Cyclosporine: nephrotoxicity, infection
 - Kidney, liver, heart transplant
 - Psoriasis, rheumatoid arthritis
- Tacrolimus (FK506): same

Cytotoxic Drugs

- Kill proliferating B and T cells
- Are non-specific: kill all rapidly dividing cells (red blood cells, skin, epithelial cells)
- Azathioprine: Adjunct transplant
- Cyclophosphamide: cancer, SLE, MS
- Methotrexate: cancer, psoriasis, arthritis
- Mycophenolate Mofetil: selective, transplant
Glucocorticoids used for non-Endocrine purposes

- Pharmacologic Actions
 - Anti-inflammatory and Immune effects
 - Inhibit prostaglandin, leukotriene, and histamine synthesis
 - Suppress infiltration of phagocytes
 - Suppress proliferation of lymphocytes
 - Effects on Metabolism and Electrolytes
 - Glucose levels rise
 - Protein synthesis suppressed
 - Fat deposits mobilized
 - Fewer electrolyte effects, but can inhibit calcium absorption

Therapeutic Uses

- Rheumatoid Arthritis
- SLE
- Inflammatory Bowel Disease (IBD)
- Miscellaneous Inflammatory D/Os
- Allergic conditions (not acute anaphylaxis)
- Asthma
- Dermatologic disorders
- Neoplasms
- Transplant rejection
- Preterm infant

Immunosuppressive effect

- Cause lysis of activated B and T cells
- Sequester T cells
- Reduce IL-2 production
- Reduce responsiveness to IL-1
- Immunosuppressive doses are large, e.g.
 - Methylprednisolone
 - Anti-immune doses: 500 – 1500mg (IV)
 - Anti-inflammatory doses: 5 – 60mg (IV)

Glucocorticoids Adverse Effects

- Adrenal insufficiency
- Osteoporosis: long term therapy
- Infection
- Glucose intolerance
- Myopathy
- F&E disturbance
- Growth retardation
- Psychological disturbances

Glucocorticoids Adverse Effects

- Cataracts and Glaucoma
- Peptic Ulcer Disease
- Iatrogenic Cushing’s Disease
- Ischemic Necrosis – especially caution with ETOH

Agents

- Short Acting | Anti-inflamat
 - Cortisone, Hydrocortisone | 1
- Intermediate Acting
 - Prednisone | 4
 - Prednisolone | 4
 - Methylprednisolone | 5
 - Triamcinolone | 5
- Long acting
 - Betamethasone | 20-30
 - Dexamethasone | 20-30