Pain, Anesthetics, Opiates, and NSAIDS

Pain
- Definition: unpleasant sensory and emotional experience
 - Subjective: sensation and emotion
 - Not necessarily correlated with a stimulus
- Purposeful: tells you that damage is being done to the body
 - Seek care
 - Stop the destructive behavior

Neurophysiology of Pain
- Pain transduction – pain stimulus
- Pain transmission – nerve conduction
- Pain perception
- Pain modulation – running interference

Pain Theories
- No Single Integrated Theory Exists
 - Specificity
 - Pattern or Summation
 - Gate Control
 - Large fibers compete for “gate access”
 - Edge out the smaller fibers
 - Endorphin-enkephalin
 - Activate opiate receptors in synapse
 - Opiate receptors
 - mu, kappa, delta
Types of Pain

- Concepts
 - Pain Threshold
 - Pain Tolerance
- Acute – autonomic hyperactivity
 - Catecholamine release: Tachycardia, tachypnea, increased BP, irritability
 - Local muscle rigidity
- Chronic
 - Continuous or intermittent
 - Little or no autonomic hyperactivity

Pain Management

- Stop the stimulus
- Introduce competing stimulus (gate theory)
- Induce natural endorphins
- Increase brain modulation
- Pharmacologic Approaches
 - Inhibit nociceptor sensitivity
 - Inhibit spinal synapse sensitivity
 - Inhibit brain pain receptors
 - Inhibit neuron transmission

Local Anesthetics

- Mechanism: block sodium channels on axons; prevents action potentials
- Selectivity
 - Pain Perception
 - Cold, Warmth
 - Touch
 - Deep Pressure
 - Also block motor neurons
- Combination with vasoconstrictors

Local Anesthetics

- Ester vs Amide
 - Amides breakdown in liver
 - Esters breakdown in blood
- Adverse effects
 - CNS excitation followed by depression, death
 - Cardiovascular system: heart blocks, death
 - Allergic reactions: more common with ester

Local Anesthetics

- Procaine (Novocain)
 - Readily absorbed, not effective topically
 - Not used very often
- Lidocaine
 - Topically, works faster
- Cocaine
 - Also causes intense vasoconstriction

Opioid Analgesics

- Vocabulary
 - Opioid
 - Opiate
 - Narcotic
- Endogenous Opioids
 - Enkaphalins
 - Endorphins
 - Dynorphins
Opioid Receptors

- **Mu** – most affected by opioid drugs
 - Analgesia, respiratory depression, euphoria, sedation, GI motility
 - Physical dependence
- **Kappa** – weakly affected by opioid drugs
 - Analgesia, Sedation, GI motility
- **Delta** – not affected by opioid drugs

Drug actions on Receptors

- **Drug actions**
 - Opioid agonists
 - Strong
 - Moderate
 - Opioid agonist-antagonists
 - Pure opioid antagonists

Morphine: Prototype Opioid

- Affects central and peripheral receptors
- **Major effects**
 - Analgesia, drowsiness, mental clouding, reduction in anxiety, euphoria
- **Other effects**
 - Respiratory depression, constipation, urinary retention, orthostatic hypotension, emesis, miosis, cough suppression, biliary colic, venous pooling

Clinical Considerations

- **Respiratory Depression**
 - Onset, 4-5 hours depression
 - Do not give if resp < 12 breath/min
- **Constipation**
- **Urinary retention**
 - Encourage voiding Q4 hours, I/Os, assessment
- **Cough suppression**
 - Encourage coughing, assessment
- **Biliary colic**
 - Suggest alternative drug
- **Emesis**
- **Intracranial Pressure (ICP)**
- **Euphoria/Dysphoria**
- **Sedation** – fall precautions, dosing
- **Miosis** – bright light
- **Itching**

Pharmacokinetics

- **Enteral route** - onset slower
- **Duration** ~4-5 hours; 12-24 hours with SR
- **Distribution**
 - Does not cross blood brain barrier **well**
 - Most drug is distributed in blood & periphery
- **Metabolized** by liver
 - Enteral route, 1st pass effect
 - Liver disease
Strong Opioids
• Fentanyl – patch (transdermal)
• Meperidine (Demerol) – benefits/problems
• Oxymorphone, Hydromorphone
• Sufentanil, Lofentanil, Alfentanil
• Methadone – often used to treat opiate addiction
• Heroin

Moderate Strength Opioids
• Codeine
• Oxycodone
• Hydrocodone
• Propoxyphene (Darvon, Darvocet)
 – Little real analgesic benefit above acetaminophen alone (Li Wan Po, Zhang, 1997, BMJ)
 – Inappropriate in patients > 65 yrs (Simon, et al., 2005, J Am Ger Soc)

Other
• Non-opioid
 – Tramadol, Ultram
• Opioid Antagonists
 – Naloxone, Narcan
• General Anesthesia
 – Analgesia
 – Amnesia
 – Paralysis

Prostaglandins
• Inflammatory mediator
• Sensitizes nociceptors and brain pain receptors
• Made from Arachidonic acid
• Manufactured by cyclooxygenase (COX)
 – Two pathways: COX-1 and COX-2
 • COX-1 pathway (virtually all tissues)
 – Stomach lining – limit acid damage
 – Platelet aggregation
 – Renal Function
 • COX-2 pathway (site of tissue injury)
 – Inflammation
COX Inhibitors

- Major classes
 - Inflammatory inhibiting agents (NSAIDS)
 - Non-inflammatory inhibiting agent

NSAIDS: Non-steroidal Anti-Inflammatory Drugs

- NSAIDS
 - Generic term to mean any drug that inhibits inflammation but does not affect cortisol receptors
 - Work by inhibiting COX
 - Selectivity - inhibit both COX-1 and COX-2
 - More selective for COX-2, fewer undesirable side effects

Typical NSAIDS

- "Nonselective" COX inhibitors
 - Aspirin
 - Ibuprofen
 - Naproxen
 - Diclofenac (Voltaren)
 - Indomethacin (Indocin)
 - Sulindac
 - Ketorolac (Toradol)
- COX-2 inhibitors
 - Celecoxib (Celebrex)

Aspiring: Prototype

- Indications
 - Suppression of inflammation
 - Analgesia
 - Reduction of Fever
 - Dysmenorrhea
 - Suppression of platelet aggregation
 - Colorectal cancer prevention
 - Protection against Alzheimer's Disease

Adverse effects

- GI: pain vs ulcer
 - Adjuvant preventative therapy
- Bleeding
- Renal impairment
- Salicylism
- Reye’s syndrome
- Pregnancy: Cat D
- Hypersensitivity

Drug Interactions

- Warfarin (Coumadin)
- Glucocorticoids (Steroids)
- Alcohol
- Ibuprofen
Formulations

- Tablets
- Buffered Tablets
- Buffered Solution
- Enteric-coated
- Time released
- Rectal suppositories
- Typical dose
 - 325-650 mg
 - Low dose: 81 mg

Key Differences with other COX-1

- ASA binds irreversibly to COX-1
 - Inhibition of Platelets
- Non-aspirin products do not protect against MI

Other Cox-1 Inhibitors

- Ibuprofen (Advil, Motrin)
- Ketoprofen (Orudis)
- Naproxen (Aleve)
- Diclofenac (Voltaren)
- Ketorolac (Toradol) can be given IM
- Indomethacin (Indocin)
- Nabumetone (Relafen)

COX-2 inhibitors

- More selective for COX-2
- Reduce pain and inflammation
- Do not produce platelet effects
- GI side effects?
- CV safety?
- Drugs:
 - Celecoxib: Celebrex (need to know)
 - Rofecoxib: Vioxx (Off the market)
 - Valdecoxib: Bextra (Off the market)

Acetaminophen

- Inhibits COX, but only in the CNS
- Reduces fever and pain
- Does not inhibit inflammation
- Maximum Dosage: 4gm/day
- Toxic metabolite may damage liver in large doses given over time
- Key point: Acetaminophen is used as adjunct in many drugs. Potential for accidental overdosing.

Aspirin, NSAIDS, Acetaminophen

<table>
<thead>
<tr>
<th>Use</th>
<th>ASA</th>
<th>NSAID</th>
<th>APAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Inflammation</td>
<td>Moderate</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Fever</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Platelet aggregation (CAD, Stroke)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>