Fluid and Electrolytes & Renal Disorders

Topics for the Day
- Fluids and Electrolytes: review of normal physiology *
- Fluid imbalances *
- Electrolyte Disturbances *
- Beginning acid-base imbalance *
- Renal Disorders
- Fluid Types *

Electrolytes
- Solute that form ions (electrical charge)
 - Cation (+)
 - Anion (-)
- Major body electrolytes:
 - Na+, K+, Ca++, Mg++
 - Cl-, HCO\textsubscript{3}-, HPO\textsubscript{4}--

Fluid & Electrolytes
- Fluid: Water
- Electrolytes: ions dissolved in water
 - Sodium, potassium, bicarbonate, etc.
 - Also used medically for non ions (glucose)
- Osmolarity – osmols/kg solvent
- Osmolality – osmols/liter solution
 - In clinical practice are used interchangeably

Electrolyte Distribution
- Major ICF ions
 - \(K^+\)
 - \(HPO_{4}^-\)
- Major ECF ions
 - \(Na^+\)
 - \(Cl^-\), \(HCO_3^-\)
- Intravascular (IVF) vs Interstitial (ISF)
 - Similar electrolytes, but IVF has proteins
Mechanisms Controlling Fluid and Electrolyte Movement

- Diffusion
- Selective Permeability
- Facilitated diffusion
- Active transport
- Osmosis
 - \(2\times Na^+ + BUN + Glucose/18\)
- Hydrostatic pressure
- Oncotic pressure

Cells are selectively permeable

Sodium is the largest Determinant of Osmolality

- \(Na^+: 135 – 145\) mEq/L
- \(Ca^+: 8.5 – 10.5\) mEq/L
- \(K^+: 3.5 – 5\) mEq/L
- Osmolality~ \(2\times (Na^+) = 2\times (135 - 145)\) mEq/L

- Normal (Isotonic) 280 – 300
- Low (hypotonic) < 280
- High (hypertonic) > 300
Fluid Exchange Between Capillary and Tissue: Sum of Pressures

Fluid Shifts
- Plasma to interstitial fluid shift results in edema
 - Elevation of hydrostatic pressure
 - Decrease in plasma oncotic pressure
 - Elevation of interstitial oncotic pressure

Fluid Movement between ECF and ICF
- Water deficit (increased ECF)
 - Associated with symptoms that result from cell shrinkage as water is pulled into vascular system
- Water excess (decreased ECF)
 - Develops from gain or retention of excess water

Fluid Spacing
- First spacing: Normal distribution of fluid in ICF and ECF
- Second spacing: Abnormal accumulation of interstitial fluid (edema)
- Third spacing: Fluid accumulation in part of body where it is not easily exchanged with ECF (e.g. ascites)

Regulation of Water Balance
- Hypothalamic regulation
- Pituitary regulation
- Adrenal cortical regulation
- Renal regulation
- Cardiac regulation
- Gastrointestinal regulation
- Insensible water loss

F&E Balance

- Renin
- Angiotensin I
- Angiotensin II
- Atrial (ANP)
- Ventricles (BNP)
- Endothelium (CNP)
- Epinephrine
- Aldosterone
Fluid Status Indicators
- Physical exam
- Mucous membranes
- Turgor
- Blood
- Hematocrit
- Plasma
- BUN

Urine
- Output (volume)
- Specific Gravity
 - < 1.003: less conc
 - > 1.030: more conc

Electrolytes

F&E Balance
- Fluids
 - Normal
 - Contracted
 - Expanded
- Electrolytes (Sodium!!!)
 - Isotonic
 - Hypertonic
 - Hypotonic

Extracellular Fluid Deficit
- Causes
 - Inadequate intake, diuresis, excess sweating, burns, diarrhea, vomiting, hemorrhage
- Treatment
 - Stop underlying disorder
 - Replace fluids appropriately
 - Treat complications

Volume Deficit
- Isotonic Deficit
 - Electrolyte drinks
 - Isotonic saline (0.9%) injection
- Hypertonic Deficit
 - Drinking Water
 - Hypotonic saline (0.45%) injection, D5W
- Hypotonic Deficit
 - Isotonic Saline
 - Hypertonic saline (3%)
Extracellular Fluid Excess

- **Causes**
 - The Three failures: heart, liver, kidney
- **Treatment**
 - Remove fluid --> ????
 - Treat underlying disorder

Electrolyte Disorders: Signs & Symptoms (most common*)

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>Excess</th>
<th>Deficit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium (Na)</td>
<td>Hypernatremia
Thirst
CNS deterioration
Increased interstitial fluid</td>
<td>Hyponatremia
CNS deterioration</td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>Hyperkalemia
Ventricular fibrillation
ECG changes
CNS changes
Weakness</td>
<td>Hypokalemia
Bradycardia
ECG changes
CNS changes
Fatigue</td>
</tr>
</tbody>
</table>

Electrolyte Normal Values (memorize!!!!!)

- Sodium 135 – 145
- Potassium 3.5 – 5
- Chloride 106 – 106
- Calcium 9 – 11
- BUN 10 – 20
- Creatinine 0.7 – 1.2
- CO₂ (really bicarb) 22 – 26
- Magnesium: 1.5 – 2.5

Electrolyte Disorders Signs and Symptoms

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>Excess</th>
<th>Deficit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium (Ca)</td>
<td>Hypercalcemia
Thirst
CNS deterioration
Increased interstitial fluid</td>
<td>Hypocalcemia
Tetany
Chvostek’s, Trouseau’s signs
Muscle twitching
CNS changes
ECG changes</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>Hypermagnesemia
Loss of deep tendon reflexes (DTRs)
Depression of CNS
Depression of neuromuscular function</td>
<td>Hypomagnesemia
Hyperactive DTRs
CNS changes</td>
</tr>
</tbody>
</table>

Hypernatremia

- **Manifestations**
 - Thirst, lethargy, agitation, seizures, and coma
 - Impaired LOC
 - Produced by clinical states
 - Central or nephrogenic diabetes insipidus
 - Reduce levels gradually to avoid cerebral edema

Hypernatremia Treatment

- Treat underlying cause
- If oral fluids cannot be ingested, IV solution of 5% dextrose in water or hypotonic saline
- Diuretics if necessary
Hyponatremia

- Results from loss of sodium-containing fluids
 - Sweat, diarrhea, emesis, etc.
- Or from water excess
 - Inefficient kidneys
 - Drowning, excessive intake
- Manifestations
 - Confusion, nausea, vomiting, seizures, and coma

Treatment

- Oral NaCl
- If caused by water excess
 - Fluid restriction is needed
- If Severe symptoms (seizures)
 - Give small amount of IV hypertonic saline solution (3% NaCl)
- If Abnormal fluid loss
 - Fluid replacement with sodium-containing solution

Hyperkalemia

- High serum potassium caused by
 - Massive intake
 - Impaired renal excretion
 - Shift from ICF to ECF (acidosis)
- Drugs
- Common in massive cell destruction
 - Burn, crush injury, or tumor lysis
 - False High: hemolysis of sample

Manifestations

- Weak or paralyzed skeletal muscles
- Ventricular fibrillation or cardiac standstill
- Abdominal cramping or diarrhea

Treatment

- Emergency: Calcium Gluconate IV
- Stop K intake
- Force K from ECF to ICF
 - IV insulin
 - Sodium bicarbonate
- Increase elimination of K (diuretics, dialysis, Kayexalate)
Hypokalemia

- Low serum potassium caused by
 - Abnormal losses of K⁺ via the kidneys or gastrointestinal tract
 - Magnesium deficiency
 - Metabolic alkalosis

Manifestations
- Most serious are cardiac
- Skeletal muscle weakness
- Weakness of respiratory muscles
- Decreased gastrointestinal motility

<table>
<thead>
<tr>
<th>Hypokalemia</th>
<th>Calcium</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl supplements orally or IV</td>
<td>Bones are readily available store</td>
</tr>
<tr>
<td>Should not exceed 10 to 20 mEq/hr</td>
<td>Blocks sodium transport and stabilizes cell membrane</td>
</tr>
<tr>
<td>To prevent hyperkalemia and cardiac arrest</td>
<td>Ionized form is biologically active</td>
</tr>
<tr>
<td>No Pee no Kay!!!!!!!!!!!!!!!!!!!!!!!!!!</td>
<td>Bound to albumin in blood</td>
</tr>
</tbody>
</table>

Calcium

- Obtained from ingested foods
- More than 99% combined with phosphorus and concentrated in skeletal system
- Inverse relationship with phosphorus
 - Otherwise...

Functions
- Transmission of nerve impulses
- Myocardial contractions
- Blood clotting
- Formation of teeth and bone
- Muscle contractions
Calcium
- Balance controlled by
 - Parathyroid hormone
 - Calcitonin
 - Vitamin D/Intake
 - Bone used as reservoir

Hypercalcemia
- High serum calcium levels caused by
 - Hyperparathyroidism (two thirds of cases)
 - Malignancy (parathyroid tumor)
 - Vitamin D overdose
 - Prolonged immobilization

Hypercalcemia
- Manifestations
 - Decreased memory
 - Confusion
 - Disorientation
 - Fatigue
 - Constipation

Treatment
- Excretion of Ca with loop diuretic
- Hydration with isotonic saline infusion
- Synthetic calcitonin
- Mobilization

Hypocalcemia
- Low serum Ca levels caused by
 - Decreased production of PTH
 - Acute pancreatitis
 - Multiple blood transfusions
 - Alkalosis
 - Decreased intake

Hypocalcemia
- Manifestations
 - Weakness/Tetany
 - Positive Trousseau's or Chvostek's sign
 - Laryngeal stridor
 - Dysphagia
 - Tingling around the mouth or in the extremities
Treatment
- Treat cause
- Oral or IV calcium supplements
 - Not IM to avoid local reactions
- Treat pain and anxiety to prevent hyperventilation-induced respiratory alkalosis

Phosphate
- Primary anion in ICF
- Essential to function of muscle, red blood cells, and nervous system
- Deposited with calcium for bone and tooth structure

Phosphate
- Involved in acid–base buffering system, ATP production, and cellular uptake of glucose
- Maintenance requires adequate renal functioning
- Essential to muscle, RBCs, and nervous system function

Hyperphosphatemia
- High serum \(\text{PO}_4^{3-} \) caused by
 - Acute or chronic renal failure
 - Chemotherapy
 - Excessive ingestion of phosphate or vitamin D
- Manifestations
 - Calcified deposition: joints, arteries, skin, kidneys, and corneas
 - Neuromuscular irritability and tetany

Hyperphosphatemia
- Management
 - Identify and treat underlying cause
 - Restrict foods and fluids containing \(\text{PO}_4^{3-} \)
 - Adequate hydration and correction of hypocalcemic conditions

Hypophosphatemia
- Low serum \(\text{PO}_4^{3-} \) caused by
 - Malnourishment/malabsorption
 - Alcohol withdrawal
 - Use of phosphate-binding antacids
 - During parenteral nutrition with inadequate replacement
Hypophosphatemia

Manifestations
- CNS depression
- Confusion
- Muscle weakness and pain
- Dysrhythmias
- Cardiomyopathy

Management
- Oral supplementation
- Ingestion of foods high in PO_4^{3-}
- IV administration of sodium or potassium phosphate

Magnesium

- 50% to 60% contained in bone
- Coenzyme in metabolism of protein and carbohydrates
- Factors that regulate calcium balance appear to influence magnesium balance

- Acts directly on myoneural junction
- Important for normal cardiac function

Hypermagnesemia

- High serum Mg caused by
 - Increased intake or ingestion of products containing magnesium when renal insufficiency or failure is present

- Manifestations
 - Lethargy or drowsiness
 - Nausea/vomiting
 - Impaired reflexes***
 - Respiratory and cardiac arrest
Hypermagnesemia
- Management
 - Prevention
 - Emergency treatment
 - IV CaCl or calcium gluconate
 - Fluids to promote urinary excretion

Hypomagnesemia
- Low serum Mg caused by
 - Prolonged fasting or starvation
 - Chronic alcoholism
 - Fluid loss from gastrointestinal tract
 - Prolonged parenteral nutrition without supplementation
 - Diuretics

Hypomagnesemia
- Manifestations
 - Confusion
 - Hyperactive deep tendon reflexes
 - Tremors
 - Seizures
 - Cardiac dysrhythmias

Hypomagnesemia
- Management
 - Oral supplements (MgO, MgSO$_4$)
 - Increase dietary intake
 - Parenteral IV or IM magnesium when severe

Elementary Acid-Base balance
- Buffer systems
 - Carbonic Acid
 - Bicarbonate
- Metabolic: bicarb
 - low → metabolic acidosis
 - high → metabolic alkalosis
- Respiratory: carbon dioxide

Metabolic Panel and acid-base
- “CO2” on a BMP means bicarb!!!!!!
- normal 22 – 26
 - <22 = ?
 - >26 =?
Metabolic Acidosis Manifestation
- Acidosis causes HYPERKALEMIA!!!
- Neuro: Drowsiness, Confusion, H/A, coma
- CV: ↓BP, dysrhythmia (K+), dilation
- GI: NVD, abd pain
- Resp: increased resp (comp)

Metabolic Alkalosis Manifestation
- Alkalosis causes HYPOKALEMIA!!!
- Neuro: Dizziness, Irritability, Nervous, Confusion
- CV: ↑HR, dysrhythmia (K+)
- GI: NV, anorexia
- Neuromuscular: Tetany, tremor, paresthesia, seizures
- Resp: decreased resp (comp)

MEMORIZE Arterial pH, PaCO2, HCO3−!!!!!!!

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Arterial</th>
<th>Venous</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.35-7.45</td>
<td>7.35-7.45</td>
</tr>
<tr>
<td>PaCO2</td>
<td>35-45 mm Hg</td>
<td>40-45 mm Hg</td>
</tr>
<tr>
<td>Bicarbonate (HCO3−)</td>
<td>22-26 mEq/L (mmol/L)</td>
<td>22-26 mEq/L (mmol/L)</td>
</tr>
<tr>
<td>PaO2</td>
<td>80-100 mm Hg</td>
<td>40-50 mm Hg</td>
</tr>
<tr>
<td>Oxygen saturation</td>
<td>90%-100%</td>
<td>60%-85%</td>
</tr>
<tr>
<td>Base excess</td>
<td>±2.0 mEq/L</td>
<td>±2.0 mEq/L</td>
</tr>
</tbody>
</table>

*Decreases above sea level and with increasing age.

Interpretation of ABGs
- Diagnosis in six steps
 - Evaluate pH
 - Analyze PaCO2
 - Analyze HCO3−
 - Determine if Balanced or Unbalanced
 - Determine if CO2 or HCO3− matches the alteration
 - Decide if the body is attempting to compensate

Interpretation of ABG
1. pH over balance
2. PaCO2 = “respiratory” balance
3. HCO3− = “metabolic” balance
4. If all three normal = balanced
5. Match direction. e.g., if pH and PaCO2 are both acidic, then primary respiratory acidosis
6. If other is opposite, then partial compensation; if pH normal, then fully compensated.

Interpretation of ABGs
- pH 7.36
- PaCO2 67 mm Hg
- PaO2 47 mm Hg
- HCO3 37 mEq/L
- What is this?
Interpretation of ABGs

- pH 7.18
- PaCO₂ 38 mm Hg
- PaO₂ 70 mm Hg
- HCO₃⁻ 15 mEq/L
- What is this?

Interpretation of ABGs

- pH 7.60
- PaCO₂ 30 mm Hg
- PaO₂ 60 mm Hg
- HCO₃⁻ 22 mEq/L
- What is this?

Interpretation of ABGs

- pH 7.58
- PaCO₂ 35 mm Hg
- PaO₂ 75 mm Hg
- HCO₃⁻ 50 mEq/L
- What is this?

Interpretation of ABGs

- pH 7.28
- PaCO₂ 28 mm Hg
- PaO₂ 70 mm Hg
- HCO₃⁻ 18 mEq/L
- What is this?

Putting it all together

- Always pay attention to
 - Patient history
 - Vital signs
 - Symptoms and physical exam findings
 - Lab Values
- Always ask:
 - What is causing this abnormal finding?
 - What can be done to fix it?

![Diagram of fluids and colloids]

- Fluids
 - DSW
 - ½ NS (0.45%)
 - Hypotonic
- Isotonic
 - NS (0.9%)
 - Lactated Ringer
- Hypertonic
 - 3% Saline
 - Plasmalyte
- Colloids
 - PRBCs
 - Albumin
 - Dextran
 - FFP
IV Fluids

- **Purposes**
 1. **Maintenance**
 - When oral intake is not adequate
 2. **Replacement**
 - When losses have occurred

D5W (Dextrose = Glucose)

- Hypotonic
- Provides 170 cal/L
- Free water
 - Moves into ICF
 - Increases renal solute excretion
- Used to replace water losses and treat hyponatremia
- Does not provide electrolytes

Normal Saline (NS)

- **Isotonic**
- No calories
- More NaCl than ECF
- 30% stays in IVF
 - 70% moves out of IV space

- Expands IV volume
 - Preferred fluid for immediate response
 - Risk for fluid overload higher
- Does not change ICF volume
- Blood products
- Compatible with most medications

Lactated Ringer’s

- **Isotonic**
- More similar to plasma than NS
 - Has less NaCl
 - Has K, Ca, PO₄³⁻, lactate (metabolized to HCO₃⁻)
 - CONTRAINDICATED in lactic acidosis
- Expands ECF

D5 ½ NS

- Hypertonic
- Common maintenance fluid
- KCl added for maintenance or replacement

<table>
<thead>
<tr>
<th>D10W</th>
<th>Plasma Expanders</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Hypertonic</td>
<td>- Stay in vascular space and increase osmotic pressure</td>
</tr>
<tr>
<td>- Max concentration of dextrose that can be administered in peripheral IV</td>
<td>- Colloids (protein solutions)</td>
</tr>
<tr>
<td>- Provides 340 kcal/L</td>
<td>- Packed RBCs</td>
</tr>
<tr>
<td>- Free water</td>
<td>- Albumin</td>
</tr>
<tr>
<td>- Limit of dextrose concentration may be infused peripherally</td>
<td>- Plasma</td>
</tr>
<tr>
<td></td>
<td>- Dextran</td>
</tr>
</tbody>
</table>

Plasma Expanders:

- Stay in vascular space and increase osmotic pressure
- Colloids (protein solutions):
 - Packed RBCs
 - Albumin
 - Plasma
 - Dextran