Fluid and Electrolytes & Renal Disorders

Topics for the Day

•Fluids and Electrolytes: review of normal physiology *

- Fluid imbalances *
- Electrolyte Disturbances *
- Beginning acid-base imbalance *
- Renal Disorders
- Fluid Types *

Electrolytes

- Solutes that form ions (electrical charge)
 - Cation (+)
 - Anion (-)
- Major body electrolytes:
 - Na+, K+, Ca++, Mg++
 - Cl-, HCO₃-, HPO₄--, SO₄-

Fluid & Electrolytes

- Fluid: Water
- Electrolytes: ions dissolved in water
 - Sodium, potassium, bicarbonate, etc.
 - Also used medically for non ions (glucose)
- Osmolarity osmols/kg solvent
- Osmolality osmols/liter solution
 - In clinical practice are used interchangeably

Electrolyte Distribution

- Major ICF ions
 - K+
 - HPO₄--
- Major ECF ions
 - NA+
 - CL-, HCO₃-
- Intravascular (IVF) vs Interstitial (ISF)
 - Similar electrolytes, but IVF has proteins

Sodium is the largest Determinant of Osmolality

Na+: 135 - 145 mEq/L
Ca+: 8.5 - 10.5 mEq/L
K+: 3.5 - 5 mEq/L
Osmolality~ 2*(Na+) = 2*(135 - 145 mEq/L)
Normal (Isotonic) 280 - 300
Low (hypotonic) < 280
High (hypertonic) > 300

Fluid Shifts

•Plasma to interstitial fluid shift results in edema

- Elevation of hydrostatic pressure
- Decrease in plasma oncotic pressure
- Elevation of interstitial oncotic pressure

Fluid Movement between ECF and ICF

- Water deficit (increased ECF)
 - Associated with symptoms that result from cell shrinkage as water is pulled into vascular system
- Water excess (decreased ECF)
 Develops from gain or retention of excess water

Fluid Spacing

•First spacing: Normal distribution of fluid in ICF and ECF

Second spacing: Abnormal accumulation of interstitial fluid (edema)

•Third spacing: Fluid accumulation in part of body where it is not easily exchanged with ECF (e.g. ascites)

Regulation of Water Balance

- Hypothalamic regulation
- Pituitary regulation
- Adrenal cortical regulation
- Renal regulation
- Cardiac regulation
- Gastrointestinal regulation
- Insensible water loss

F&E Balance

- Fluids
 - Normal
 - Contracted
 - Expanded
- Electrolytes (Sodium!!!)
 - Isotonic
 - Hypertonic
 - Hypotonic

Causes

Extracellular Fluid Excess

Causes

•The Three failures: heart, liver, kidney

Treatment

Remove fluid --> ????

Treat underlying disorder

Electrolyte Normal Values (memorize!!!!!)

- Sodium 135 145
- Potassium 3.5 5
 Chloride 106 106
- Calcium 9 11
- BUN 10 20
- Creatinine 0.7 1.2
- CO2 (really bicarb) 22 26
- **Magnesium: 1.5 2.5**

Electrolyte Disorders: Signs & Symptoms (most common*)

Electrolyte	Excess	Deficit
Sodium (Na)	Hypernatremia Thirst CNS deterioration Increased interstitial fluid	Hyponatremia CNS deterioration
Potassium (K)	Hyperkalemia Ventricular fibrillation ECG changes CNS changes Weakness	Hypokalemia Bradycardia ECG changes CNS changes Fatigue

Electrolyte Disorders Signs and Symptoms

Electrolyte	Excess	Deficit
Calcium (Ca)	Hypercalcemia Thirst CNS deterioration Increased interstitial fluid	Hypocalcemia Tetany Chvostek's, Trousseau's signs Muscle twitching CNS changes ECG changes
Magnesium (Mg)	Hypermagnesemia Loss of deep tendon reflexes (DTRs) Depression of CNS Depression of neuromuscular function	Hypomagnesemia Hyperactive DTRs CNS changes

Hypernatremia

Manifestations

•Thirst, lethargy, agitation, seizures, and coma

- Impaired LOC
- Produced by clinical states
 Central or nephrogenic diabetes insipidus
- Reduce levels gradually to avoid cerebral edema

Hypernatremia Treatment

- Treat underlying cause
- •If oral fluids cannot be ingested, IV solution of 5% dextrose in water or hypotonic saline
- Diuretics if necessary

Hyponatremia

- Results from loss of sodium-containing fluids
- Sweat, diarrhea, emesis, etc.
- Or from water excess
 - Inefficient kidneys
 - Drowning, excessive intake
- Manifestations
 Confusion, nausea, vomiting, seizures, and coma

Treatment

Oral NaCl

- If caused by water excess
 Fluid restriction is needed
- If Severe symptoms (seizures)
 Give small amount of IV hypertonic saline solution (3% NaCl)
- If Abnormal fluid loss
 Fluid replacement with sodiumcontaining solution

Hyperkalemia

- •High serum potassium caused by
 - Massive intake
 - Impaired renal excretion
 Shift from ICF to ECF (acidosis)
 - Drugs
- Common in massive cell destruction Burn, crush injury, or tumor lysis
- **•False High: hemolysis of sample**

Hyperkalemia

Manifestations

- Weak or paralyzed skeletal muscles
- •Ventricular fibrillation or cardiac standstill
- Abdominal cramping or diarrhea

- Emergency: Calcium Gluconate IV
- Stop K intake
- Force K from ECF to ICF
 IV insulin
 - Sodium bicarbonate
- Increase elimination of K (diuretics, dialysis, Kayexalate)

Hypokalemia

- Low serum potassium caused by
 Abnormal losses of K⁺ via the kidneys or gastrointestinal tract
 Magnesium deficiency
 - Metabolic alkalosis

Hypokalemia

- Manifestations
 - Most serious are cardiac
 - Skeletal muscle weakness
 - Weakness of respiratory muscles
 - Decreased gastrointestinal motility

Hypokalemia

- KCl supplements orally or IV
- Should not exceed 10 to 20 mEq/hr
 To prevent hyperkalemia and cardiac arrest

Calcium

- Obtained from ingested foods
- •More than 99% combined with phosphorus and concentrated in skeletal system
- Inverse relationship with phosphorusOtherwise...

Calcium

- Bones are readily available store
- Blocks sodium transport and stabilizes cell membrane
- Ionized form is biologically active
 - Bound to albumin in blood
 - Bound to phosphate in bone/teeth
 - Calcified deposits

Calcium

Functions

- Transmission of nerve impulses
- Myocardial contractions
- Blood clotting
- **•**Formation of teeth and bone
- Muscle contractions

Calcium

- Balance controlled by
- Parathyroid hormone
- Calcitonin
- •Vitamin D/Intake
- Bone used as reservoir

Hypercalcemia

- •High serum calcium levels caused by
 - •Hyperparathyroidism (two thirds of cases)
 - Malignancy (parathyroid tumor)
 - Vitamin D overdose
 - Prolonged immobilization

Hypercalcemia

Manifestations

- Decreased memory
- Confusion
- Disorientation
- Fatigue
- Constipation

Treatment

- **Excretion of Ca with loop diuretic**
- Hydration with isotonic saline
- infusion
- Synthetic calcitonin
- Mobilization

Hypocalcemia

- Low serum Ca levels caused by
 - Decreased production of PTH
 - Acute pancreatitis
 - Multiple blood transfusions
 - Alkalosis
 - Decreased intake

Hypocalcemia •Manifestations •Weakness/Tetany •Positive Trousseau's or Chvostek's sign •Laryngeal stridor •Dysphagia •Tingling around the mouth or in the extremities

Treatment

- Treat cause
- Oral or IV calcium supplements
 Not IM to avoid local reactions
- Treat pain and anxiety to prevent hyperventilation-induced respiratory alkalosis

Phosphate

- Primary anion in ICF
- Essential to function of muscle, red blood cells, and nervous system
 Deposited with calcium for bone and tooth structure

Phosphate

- Involved in acid–base buffering system, ATP production, and cellular uptake of glucose
- Maintenance requires adequate renal functioning
- **•**Essential to muscle, RBCs, and nervous system function

Hyperphosphatemia

- •High serum PO₄³⁻ caused by
 - •Acute or chronic renal failure
 - Chemotherapy
 - •Excessive ingestion of phosphate or vitamin D
- Manifestations
 - Calcified deposition: joints, arteries,
 - skin, kidneys, and corneas
 - Neuromuscular irritability and tetany

Hyperphosphatemia

Management

- Identify and treat underlying cause
- •Restrict foods and fluids containing PO₄³⁻

•Adequate hydration and correction of hypocalcemic conditions

Hypophosphatemia

- Low serum PO₄^{3–} caused by
 - Malnourishment/malabsorption
 - Alcohol withdrawal
 - Use of phosphate-binding antacids
 - •During parenteral nutrition with inadequate replacement

Hypophosphatemia

- Manifestations
 - CNS depression
 - Confusion
 - Muscle weakness and pain
 - Dysrhythmias
 - Cardiomyopathy

Hypophosphatemia

- Management
 - Oral supplementation
 - Ingestion of foods high in PO₄³⁻
 - IV administration of sodium or
 - potassium phosphate

Magnesium

50% to 60% contained in bone

Coenzyme in metabolism of protein and carbohydrates

•Factors that regulate calcium balance appear to influence magnesium balance

Magnesium

Acts directly on myoneural junctionImportant for normal cardiac function

Hypermagnesemia

High serum Mg caused by

•Increased intake or ingestion of products containing magnesium when renal insufficiency or failure is present

Hypermagnesemia

Manifestations

- Lethargy or drowsiness
- Nausea/vomiting
- Impaired reflexes***
- Respiratory and cardiac arrest

Hypermagnesemia

- Management
 - Prevention
 - Emergency treatment
 - •IV CaCl or calcium gluconate
 - •Fluids to promote urinary excretion

Hypomagnesemia

- Low serum Mg caused by
 - Prolonged fasting or starvation
 - Chronic alcoholism
 - •Fluid loss from gastrointestinal tract
 - Prolonged parenteral nutrition without supplementation
 - Diuretics

Hypomagnesemia

Manifestations

- Confusion
- Hyperactive deep tendon reflexes
- Tremors
- Seizures
- Cardiac dysrhythmias

Hypomagnesemia

Management

- •Oral supplements (MgO, MgSO₄)
- Increase dietary intake
- •Parenteral IV or IM magnesium when severe

Elemenary Acid-Base balance

Buffer systems

- Carbonic Acid
- Bicarbonate
- Metabolic: bicarb
 - •low \rightarrow metabolic acidosis
 - •high \rightarrow metabolic alkalosis
- **Respiratory: carbon dioxide**

Metabolic Panel and acid-base

"CO2" on a BMP means bicarb!!!!!!
"normal 22 - 26
<22 = ?</pre>

>26 =?

Metabolic Acidosis Manifestat

Acidosis causes HYPERKALEMIA!!!

- Neuro: Drowsiness, Confusion, H/A, coma
- ■CV: ↓BP, dysrhythmia (K+), dilation
- GI: NVD, abd pain
- Resp: increased resp (comp)

Metabolic Alkalosis Manifestat

- Alkalosis causes HYPOKALEMIA!!!
 Neuro: Dizziness, Irritability, Nervous, Confusion
 CV: ↑HR, dysrhythmia (K+)
 GI: NV, anorexia
 Neuromuscular: Tetany, tremor,
- paresthesia, seizures
- Resp: decreased resp (comp)

MEMORIZE Arterial pH, PaCO2, HCO ₃ -!!!!!!			
	Normal Arterial a Blood Gas Value Arterial		
pH	7.35-7.45	7.35-7.45	
pH PaCO ₂	7.35-7.45 35-45 mm Hg	7.35-7.45 40-45 mm Hg	
pH	7.35-7.45 35-45 mm Hg) 22-26 mEq/L	7.35-7.45 40-45 mm Hg 22-26 mEq/L	
pH PaCO₂ Bicarbonate (HCO₃ [−]	7.35-7.45 35-45 mm Hg) 22-26 mEq/L (mmol/L)	7.35-7.45 40-45 mm Hg 22-26 mEq/L (mmol/L)	
pH PaCO ₂	7.35-7.45 35-45 mm Hg) 22-26 mEq/L	7.35-7.45 40-45 mm Hg 22-26 mEq/L	

Interpretation of ABGs

- Diagnosis in six steps
 - Evaluate pH
 - Analyze PaCO₂
 - Analyze HCO₃⁻
 - Determine if Balanced or Unbalanced
 Determine if CO₂ or HCO₃⁻ matches
 - the alteration
 - Decide if the body is attempting to compensate

Interpretation of ABG

- 1. pH over balance
- 2. PaCO2 = "respiratory" balance
- 3. HC03- = "metabolic" balance
- 4. If all three normal = balanced
- 5. Match direction. e.g., if pH and PaCO2 are both acidotic, then primary respiratory acidosis
- 6. If other is opposite, then partial compensation; if pH normal, then fully compensated.

Interpretation of ABGs

■pH 7.36

- PaCO₂ 67 mm Hg
 PaO₂ 47 mm Hg
 HCO₃ 37 mEq/L
- What is this?

Interpretation of ABGs

pH 7.18
PaCO₂ 38 mm Hg
PaO₂ 70 mm Hg
HCO₃⁻ 15 mEq/L
What is this?

Interpretation of ABGs

pH 7.60
PaCO₂ 30 mm Hg
PaO₂ 60 mm Hg
HCO₃⁻ 22 mEq/L
What is this?

Interpretation of ABGs

pH 7.58
PaCO₂ 35 mm Hg
PaO₂ 75 mm Hg
HCO₃- 50 mEq/L
What is this?

Interpretation of ABGs

pH 7.28
PaCO₂ 28 mm Hg
PaO₂ 70 mm Hg
HCO₃- 18 mEq/L
What is this ?

Putting it all together

- Always pay attention to
 - Patient history
 - Vital signs
 - Symptoms and physical exam findingsLab Values
- •Lab values
 •Always ask:
- What is causing this abnormal finding?
 What can be done to fix it?

IV Fluids

- Purposes
 - 1. Maintenance
 - When oral intake is not adequate
 - 2. Replacement
 - When losses have occurred

D5W (Dextrose = Glucose)

- Hypotonic
- Provides 170 cal/L
- Free water
 - Moves into ICF
 - Increases renal solute excretion
- **Used to replace water losses and treat hyponatremia**
- Does not provide electrolytes

Normal Saline (NS)

Isotonic

- No calories
- More NaCl than ECF
- **30%** stays in IVF
 - **•70% moves out of IV space**

Normal Saline (NS)

- Expands IV volume
 - Preferred fluid for immediate response
 - Risk for fluid overload higher
- Does not change ICF volume
- Blood products
- Compatible with most medications

Lactated Ringer's

Isotonic

- More similar to plasma than NSHas less NaCl
 - •Has K, Ca, PO₄^{3–}, lactate (metabolized to HCO₃[–])
 - •CONTRAINDICATED in lactic acidosis
- Expands ECF

D5 ½ NS

- Hypertonic
- Common maintenance fluid
- **•KCl added for maintenance or replacement**

D10W

- Hypertonic
- Max concentration of dextrose that can be administered in peripheral IV
- Provides 340 kcal/L
- Free water

•Limit of dextrose concentration may be infused peripherally

Plasma Expanders

Stay in vascular space and increase osmotic pressure

- Colloids (protein solutions)
 - Packed RBCs
 - Albumin
 - Plasma
 - Dextran