Blood Pressure and Antihypertensive Medications

Circulation

- · Two systems
 - Pulmonary (low pressure)
 - Systemic (high pressure)
 - Aorta 120 mmHg
 - · Large arteries 110 mmHg
 - Arterioles 40 mmHg
 - Arteriolar capillaries 30 mmHg
 - Venous capillaries 18 mmHg
 - Venules 16 mmHg
 - Muscular Veins 12 mmHg
 - · Central Veins 7 mmHg
 - · Right atrium -5 mmHg

Arterial flow

- · Pressure gradient
 - Heart generates pressure
 - Arteries contract or dilate to control flow and pressure
 - Resistance to blood flow
 - · Vessel diameter
 - Vessel length
 - · Blood viscosity

- Constriction of venous SMC
- Constriction of skeletal muscles
- One way venous valves

Regulation of Cardiac Output

- CO ~ 5liters/min
- CO = HR X SV
- Average HR 70 bpm, average SV 70ml
 CO = 70 X 70 = 4900 ml/min = 4.9 liters/min

Heart Rate

- Autonomic nervous system innervates SA node
 - HR increases
 - Sympathetic stimulation
 - β₁ adrenergic receptors
 - HR decreases
 - Parasympathethic impulses
 - · Muscarinic Receptors
 - · Vagus nerve

Stroke Volume

- · Myocardial contractility
 - Cardiac stretch (Starling's law of the Heart)
 - Sympathetic stimulation (β_1 receptors)
- · Cardiac preload
- · Cardiac afterload

Starling's Law of the Heart

- · More stretch
- · More contraction
- Up to a point

Preload

- Stretch applied to cardiac muscle prior to contraction
- Stretch is determined by amount of blood in ventricle at the end of diastole
 - End-diastolic volume
 - End-diastolic pressure
- · How does preload affect Stroke Volume?

Control of Preload

- · Affected by drugs
 - Venous tone
 - Blood volume
- · Not affected by drugs
 - Skeletal muscle contractions
 - Resistance to flow in veins (e.g. thrombus)
 - Right atrial pressure

Systemic-Pulmonary Balance

- Right and Left heart MUST pump same amount of blood
- · Very small disturbance can result in death
 - Fun with Math

Afterload

- Load against which a muscle (myocardium) must contract
- · Operationally afterload is blood pressure

Arterial Pressure

- MAP = CO X TPR
 - -CO = ?
 - TPR regulated by dilation/constriction
- · Control mechanisms
 - ANS
 - RAAS
 - Kidneys
 - Local

ANS control of MAP

- · Adjusts CO and peripheral resistance
- CO = ?
- Arteries
 - Sympathetic stimulation causes constriction
 - α-1 receptors in arteries
 - No parasympathetic innervation
 - Complete removal of sympathetic tone reduces MAP by half

Control of ANS

- · Baroceptor reflex
 - Carotid sinus
 - Aortic arch
- · When drop in MAP is sensed
 - Constriction of arterioles
 - Constriction of veins
 - Acceleration of heart rate
- · Baroceptor resetting

RAAS

- · Angiotensin II
 - Constriction of arterioles
 - Hours
- Aldosterone
 - Retention of sodium and water
 - Days
 - Remodeling of heart and muscle
 - Weeks Months

Renal Retention of Water

- Ultimate control of blood pressure!!!
 - Goal is to maintain renal perfusion
- · Under influence
 - GFR
 - -RAAS
 - ADH
 - Natriuretic peptides

Natriuretic Peptides

- · Peptides that reduce vascular volume and
 - ANP (atrial) produced by atrial myocytes
 - BNP (brain) ventricular myocytes and brain
 - Both cause
 - Natriuresis
 - Diuresis
 - Increase vascular membrane permeability
 - Promote vasodilation (inhibition of sympathetic impulses)
 - CNP (endothelium)
 - vasodilation

Hypertension Etiology

- Primary (essential) hypertension
- · Secondary caused by something else
 - Accuracy of Diagnosis
 - Apnea (obstructive sleep)
 - Aldosteronism
 - Bruit (renal)
 - Bad kidneys
 - Catecholamines
 - Coarctation of Aorta

Hypertension Etiology

- Secondary Hypertension continued
 - Cushing's Syndrome
 - Drugs
 - Diet
 - Erythropoietin (excess)
 - Endocrine disorders

Hypertension Pathogenesis

- · Disease of degree
- · Hypertension begets hypertension
- · End organ damage
 - Heart
 - Brain
 - Kidneys
 - Arteries
 - Eye

Hypertension Pathogenesis

- · Arteries
 - Higher pressure causes physical damage
 - Scars elastic arteries
 - Increased risk for atherosclerosis
 - Turbulent blood flow decreases endothelial function
 - · Pressure causes more blood particles to enter intimal space
 - Resetting of baroceptors causes body to think hypertension is normal

Hypertension Pathogenesis

- Heart
 - Ventricular hypertrophy
 - · Vicious cycle
 - Results in smaller chambers → less Cardiac output
 - Less output → has to work harder
 - Works harder → hypertrophies more
 - · More at risk for ischemia
 - · More vulnerable to coronary artery disease

Hypertension Pathogenesis

- Brain
 - Increased risk of atherosclerotic stroke
 - Increased risk of hemorrhagic stroke
- Kidney
 - Glomerulus is artery, not capillary
 - Increased pressure causes increased GFR
- - Retinal arteries sensitive to pressure damage

Hypertension Clinical Manifestations

- The Silent Killer
 - DUN DUN DUN DUN
 - Headache
 - Double vision
 - Lightheadedness - Nose bleeds
 - Anxiety
- Palpitations
- Sweating
- Increased urine output

- Weakness
- Hematuria
- Retinal changes
- Hyperemic ears and mucous membranes
- Hyperemic conjunctiva
- Subconjunctival bleed

Approaches to Hypertension Treatment

- · Inhibit Sympathetic impulses
 - Inhibit Cardiac contractility and heart rate
 - Inhibit vasoconstriction
- Inhibit RAAS
- · Inhibit vasoconstriction
- · Inhibit Renal retention of water

Antihypertensive Classes

- Diuretics Inhibit Renal Retention
- · Beta blockers inhibit heart sympathetic
- · Alpha-1 blockers inhibit artery sympathet
- Alpha-2 agonist inhibit both sympathetic
- Calcium channel blockers inhibit cardiac and/or arterial muscle constriction
- ACE inhibitors inhibit RAAS
- ARBs inhibit RAAS
- Direct vasodilators self explanatory