Coronary Artery Disease, Angina and MI

Coronary Artery Disease

- Most CAD nothing more than Atherosclerosis in the coronary arteries
- Chronic leads to angina pectoris
- Acute is MI
 - 700,000 new MIs in U.S.
 - 500,000 recurrent MIs in U.S.

Atherogenic diet

Coronary Arteries

Myocardial Ischemia

- Blood flow must be impeded before heart metabolism is affected
 - Absolute
 - Relative
- Causes
 - Atherosclerosis, Vasospasm
 - Hypotension, Arrythmias, Anemia, V/Q

Supply/Demand Considerations

- Oxygen supply
 - Cardiac output
 - Hemoglobin levels
 - Respiratory function
 - Fitness of muscle
- Oxygen demand
 - Work of the heart
 Contractility
 - Contra
 HR
 - Hypertrophy of the heart

Myocardial Ischemia

- Myocardium becomes ischemic within 10 seconds of coronary occlusion
- *Working* cells remain viable for up to 20 minutes
 - Anaerobic mechanisms kick in

• Lactic acid

• Free radical damage, esp after reperfusion

Cardiac Ischemia Manifestation

- Stable angina
 - Chronic obstruction
 - Chest pain with exertion
 - May radiate, may have diaphoresis, SOB, pallor
 - Relief with rest or nitrates
- Prinzmetal angina
- Silent ischemia
- Unstable angina

 May become a myocardial infarction

Evaluation

- H&P
- Lipids, BP, risk factor assessment
- ECG
- Stress test
- Angiography
- Unstable angina
 - Cardiac enzymes (rule in/out for MI)

Treatment for Stable Angina

- Drug
 - Nitrates
 - Beta blockers
 - Calcium Channel Blockers
 - Atherosclerotic disease tx (HTN, Lipids)
- Surgery
- Bypass
 - PCI (PTCA, Stent)
 - Experimental

Acute Coronary Syndrome

- Unstable Angina reversible ischemia
 - Rupture of an unstable plaque
 - Clots spontaneously resolve over time
 - Damage depends on size of clot and rate of dissolution vs. rate of clot formation
 - Myocardial infarction

MI Pathophysiology

- Plaque rupture --> Clotting cascade active
- Thrombus occludes vessel
- Myocardium becomes hypoxic
 - Shift to Anaerobic Respiration
 - Waste products release/hypoxic injury
 - Cardiac output impaired
 - Norepinephrine/Epinephrine Release
 - Renin release

Myocardial Changes

- Myocardial stunning
 - Temporary loss of contractility that persists for hours to days
- Myocardial hibernation
 - Chronically ischemic; myocytes are hibernating to preserve function until perfusion can be restored
- Myocardial remodeling
 - Loss of contractility mediated by Ang II, catecholamines, and inflammatory cytokines

Ischemic Morphology

- Increased O2 demand: epinephrine, RAAS
- Hypoactive wall/Necrosis
 - Transmural
 - Subendocardial
- · Conductile problems
 - PVCs
 - Dysrhythmias

ECG changes

- Conductile cells of heart are most sensitive to hypoxia
- Classic: T-wave inversion, ST-elevation, Q waves
- Non-Q wave MI: no Q waves, possibly normal ST segment
- R/O CANNOT be made with ECG alone !!!

MI Manifestations

- Prodromal
 - Symptoms usually appear 24-72 hours before
 - Malaise, Tiredness, Weakness fatigue
 - Visual disturbance
- Acute Phase
 - Symptoms: Chest Pain, Dyspnea, Nausea, Diaphoresis, weakness, fatigue, anxiety
 - Signs: Gray/ashen, gasping, clutching, loss of consciousness, confused, ECG changes, tachycardia, tachypnea

Eval & Tx • ECG • Cardiac Enzymes X 4 – If Ruled in • Anticoagulation, antiplatelet • Thrombolytic Therapy • Cath lab, Emergency bypass – If Ruled out

- Stress test
- Angiogram
- MONA: Morphine, O₂, Nitrates, ASA

Nitroglycerine

- Vasodilating actions
 - Primarily acts on veins and large arteries
 - Uptake by VSM cells and converts to active form: NO
- Therapeutic uses: Stable Angina
 - Decreases preload \rightarrow decreases contraction \rightarrow oxygen demand
 - Does not dilate coronary arteries

Nitrates

- Kinetics
 - Highly lipid soluble: can be given PO, IV, SL,
 - transdermal
 - Rapid inactivation by organic nitrate reductases
 - Half-life 5 7 minutes
 - PO: most drug is destroyed in liver before reaching systemic circulation
- Adverse Effects
 - Headache
 - Orthostatic Hypotension
 - Reflex tachycardia

Nitrates

- Interactions
 - Other hypotensive drugs
 - Beta blockers, verapamil, diltiazem
 - Sildenafil (Viagra) life threatenening: 25 mmHg drop
- Tolerance
 - Most common in high dose, continuous therapy
 - Prevent by using lower dose intermittent therapy:
 8 hour drug free time

Nitrates

Preparations

- Sublingual: works in 1 3 minutes; lasts an hour; expires within 6 months of opening
- Translingual spray
- Topical Ointment
- Transdermal patch
- PO Sustained release capsules or tablets: higher doses d/t first pass effect (isosorbide mononitrate, dinitrate)
 IV infusion: glass bottle, special (vented) tubing
- Nursing implications
- Check BP before and after administering
- Assess for headache
- Discontinue slowly if patient has been on it for a while

Immediate Post MI Tx

- Most common cause of death within 72 hours of MI is _
 - Must be monitored
- · Reduce myocardial workload
- Prevent Remodeling
- Reduce chances of reocclusion
- Reduce oxidative stress (reperfusion injury)

Post MI Treatment

- Lifestyle
 - Diet
 - Exercise Cardiac Rehab
 - Stress management
- Drugs
 - Antiplatelet: ASA, clopidogrel, persantine
 - Beta blocker
 - Statin medication
 - Treat risk factors (HTN, lipid, smoke, etc.)
 - Sometimes coumadin

Post MI Evaluation

- Stress test
- Angiography
- Symptoms

Dyslipidemia

- Half of all heart attacks occur in persons with elevated cholesterol
- Lipoprotein
 - Lipids, Phospholipids, Cholesterol, Tryglycerides
- Needed for
 - plasma membrane maintenance
 - Sterol hormones
 - Bile acids
 - Skin (water resistance)

Cholesterols

- Sources of cholesterol
 - Dietary absorption (exogenous)
 - Synthesis of new cholesterol (endogenous)
 - Increased dietary consumption inhibits synthesis
 - Fat substrates
- Triglycerides
 - Storage form of lipids long term storage
 - Adipose tissue

Cholesterol Cycle

- Chylomicrons
 - Lipid packages absorbed from intestine
 - Transported to liver
- Liver manufactures
 - VLDL: triglycerides + protein
 - LDL: cholesterol + protein
 - HDL: phospholipids + protein
 - Lipoprotein(a) [Lp(a)]

VLDL

- one B-100 apolipoprotein
- triglyceride core
- · deliver triglycerides to muscle and adipose
- Clinical significance
 - Accounts for nearly all triglycerides in blood
 - Normal triglyceride level is <150 mg/dl
 - ->150 associated with Metabolic syndrome
 - ->400 500 associated with pancreatitis

LDL

- One B-100 apolipoprotein
- Cholesterol core
- Deliver cholesterol to nonhepatic tissues

 Cells that need cholesterol endocytose the LDL
 - molecule
 - If more cholesterol is needed more LDL receptors are produced
- Clinical significance
 - Direct correlation with heart disease
 - 25% reduction of elevated LDL corelated with up to 50% reduction in MI risk

HDL

- Contain apolipoprotein A-I, or A-I and A-II
- Cholesterol core
- Transport cholesterol back to liver
- Clinical Significance
 - Promote cholesterol removal
 - Low cholesterol is associated with increased risk of atherosclerosis
 - Apparently only A-I HDL is cardioprotective
 - Subtype analysis

Role of Cholesterol in Atherosclerosis

- LDL is benign until oxidized in subendothelial (intimal) space
- Oxidized LDL
 - Attract monocytes and promote differentiation to macrophages
 - Inhibit macrophage mobility: chronic inflammation
 - Promote uptake by macrophages
 - Are cytotoxic: damage endothelial cells and contribute to inflammation

Dyslipidemia

- Imbalance in proportion of lipoproteins
- Primary
- Secondary
 - DM
 - Hypothyroidism
 - Pancreatitis
 - Renal nephrosis

Dyslipidemia Tx Goals

- Total cholesterol
 - >240 high
 - 200 240 gray zone
- LDL
 - -<160 high
 - <130 depending on risk factors</p>
 - <100 depending on risk factors</p>
- HDL
 - ->40 for men; 50 for women low
- Triglycerides
- < 150 high

Determinants of Treatment Goals

- Several schemes
 - Number of CAD risk factors
 - Ten year Framingham risk score
 - CHD equivalent
 - Diabetes
 - Other atherosclerotic diseases (PAD, AAA, carotid atherosclerosis

Treatment

- TLC
 - Diet
 - Weight Control
 - Exercise
 - Smoking Cessation (also helps HDL)
- Drug Therapy
 - Primary goal is lower LDL
 - Secondary targets
 - Metabolic syndromeLower Triglycerides
 - Raise HDL

Cholesterol Medications

- See table 48-7
- Statins
- Bile Acid sequestrants
- Fibrates
- Niacin (Nicotinic acid)
- Zetia

Statins

- Adverse Effects
 - Hepatotoxicity 0.5 2% of patients treated > 1 year Myopathy 1 – 5% --> Myositis -->Rhabdomyolysis 0.15/million
 - prescriptions - Risk: age, small frame, frailty, DM/renal dz, high dose statins, fibrates, hypothyroid
- Interactions
 - Fibrates: myopathy
 - Agents that inhibit CYP3A4: cyclosporine, macrolides, azol fungicides, HIV protease inhibitors, grape fruit juice
 - Pregnancy: CatX
- Administration considerations
- Timing
- Meal or snack: lovastatin

Nicotinic Acid (Niacin)

- Raises HDL better than anything else to date Mechanism: Decresed production of VLDLs, HDL?
- Therapeutic effects
- LDL, HDL, Triglyceride
- Luc, ...
 Uses
 Risk for pancreatitis
 Low HDL
 Niacin deficiency (much lower doses)
 offacts

- Flushing/Itching
- GI upset
- Hepatotoxic

- Fast release
 Sustained release (slo-niacin)
 Extended release (Niaspan)
 Raises homocysteine
 Rarer: hyperglycemia, gouty arthropathy

Bile Acid Sequestrants

- Older: Cholestyramine and Cholestipol .
- Mechanism of Action Bind to Bile acids in intestine
 - Prevents reabsorption of cholesterol Body needs to increase synthesis
 - Increase of LDL hepatocytes

- Uses
 High LDL
 Usually in combo with statin
 -fforts Adverse effects – Gl complaints: constipation, bloating, nausea Interactions
- May bind to other drugs and prevent their absorption
 Vitamins A,D,E, K
- Thiazides, digoxin, warfarin, some antibiotics
 Newer: Cholesvelam (Welchol)
- Better tolerated
- Better tolerated
 Less interaction with Vitamins and drugs

Fibrates

- · Mechanism mostly not understood
- Therapeutic effects ٠
- HDL
- LDL
- Triglycerides
- · Adverse effects
 - Gallstones
 - Myopathy --> rhabdomyolysis
 - Liver damage
- Interactions
 - Increased risk of rhabdo when combined with statins

Ezetimibe (Zetia-no class)

- Mechanism
- Blocks cholesterol uptake at the brush border of intestine
- Therapeutic effects
 - LDL, HDL, Triglycerides
- Uses
 - Lower LDL
 - Adjunct to statins
- Adverse effects – none?
- Interactions
 - Statins
 Fibrates
- NO BENEFIT IN PREVENTING CAD