Hematologic Disorders and Medications

Functions of blood

- Delivery of substances needed for cellular metabolism, esp:
 - Glucose
 - Oxygen
- Transport of waste substances
- Defense against invading organisms & injury
- Acid-Base Balance

Composition of Blood

- Suspension in a colloid solution
 - Plasma: Water portion of blood (50 55%)
 - 91-92% water
 - 8% solids
 - Proteins: Albumin, globulins, clotting factors,
 - complement, enzymes, etc,
 - Other organic: Fats, phospholipids, cholesterol, glucose, nitrogenous substances (urea, uric acid, creatinine, etc.)
 - Inorganic minerals and electrolytes Cells
 - Formed Elements (45 50%)
 - Cells and Platelets

Plasma Proteins

- Albumin ~53% formed in liver
- Globulins ~ 43% formed in liver and lymphoid tissue (immunoglobulins)
- Fibrinogen ~4%

Formed Elements

- · Erythrocytes: red blood cells
- · Leukocytes: White blood cells
- Platelets
- All have a finite life span; must constantly be replaced
- Hematopoiesis: process of growing new formed elements

Erythrocytes (RBCs)

- ~5 million
- Primarily responsible for tissue oxygenation
- Lifespan = 120 days
- Hemoglobin (Hgb) ~15 grams
 - Hb A: adult
 - Hb F: fetal
 - Hb: S: sickle cell
 - Hb A1C: glycosolated

Erythrocytes continued

- Hematocrit (Hct)
 - 45%
 - Packed red blood cell volume
 - Percentage of total blood volume
- Unique RBC characteristics
 - Biconcavity
 - Reversible deformity

Leukocytes

- 5,000 10000/mm³
- · Final destination:
- Granulocytes
 - Neutrophils
 - Eosinophils
 - Basophils
- · Monocytes Macrophages
- · Lymphocytes

Neutrophils

- 57 67%
- Polymorphonuclear (PMNs) "polys"
 - Segmented: adults
 - Bended: immature
 - Blasts: even less mature
- Predominant phagocyte in early inflammation

Neutrophil

- · Primary roles
 - Removal of debris
 - Phagocytosis of bacteria
 - Prepare the injured site for
 - Healing
- Lifespan 4 days
- · Large reservoir in marrow
- Die 1-2 days after migrating to inflamed site

Eosinophil

- 1-4%
- · Primary roles
 - Allergy Ingest antigenantibody complexes
 Mediate vascular effects of histamine and
- serotonin in allergic reactions
 Bind to and degranulate onto parasites (worms)
- Lifespan unknown; primarily distributed in tissue, not blood

Basophil

- < 1%
- Function unknown
 - Defend against fungus?
 - Associated with allergic reactions and mechanical irritation
 - Structurally similar to mast cells
- Lifespan unknown: primarily distributed in tissues

Monocyte - Macrophages

- Monocytes (monos) 3 -7%
 - Become macrophages upon entering tissues
 - Arrive 3 7 days after injury
 - Long term defense against infection
 - Promote wound healing, clotting
 - Are directed by TH1 lymphocytes
 - Secrete colony stimulating factors (CSF)
- · Lifespan months or years

Lymphocytes

- 25 33%
- · Primary function
 - React against specific antigens or cells bearing those antigens
- Circulate in blood, but primarily live in lymph tisues: node, spleen, vessels, and –ALTs
- T lymphocytes (cell mediated immunity)
- B lymphocytes (humoral immunity)

Thrombocytes (Platelets)

- 140,000 340,000/mm³
- Irregularly shaped cytoplasmic fragments
 - Break off of megakaryocytes
 - Cell fragments
- Primary function
 - Form blood clots
 - Contain cytoplasmic granules that release in response to endothelial injury
- Lifespan 7 10 days; 1/3 stored in spleen

Hematopoiesis

- Occurs in marrow of skull, vertebrae, pelvis, sternum, ribs, proximal epiphyses
- Production is regulated by colony stimulating factors (CSF)

 Ervthropoietin
 - G-CSF
- Two stage process
 Proliferation
 - Differentiation

Pluripotent Stem Cell

- · Gives rise to colony forming units
 - Myeloid progenitor
 - · CFU GM: neutrophils and monocytes
 - CFU E: Erythrocytes
 - CFU Meg: Platelets
 - CFU Bas: Basophils
 - CFU Eo: Eosinophils
 - Lymphoid progenitor
 - · B lymphocyte
 - T lymphocyte

Colony Stimulating factors

- M-CSF stimulates Macrophages
- GM-CSF stimulates Neutrophils, Macrophages, and Eosinophils
- G-CSF stimulates Neutrophils, Eosinophils, and Basophils
- IL-3 stimulates Neutrophils and Macrophages
- IL 2 stimulates Platelets
- · Erythropoietin stimulates Erythrocytes

Development of Erythrocytes

- Uncommitted pluripotent Stem Cell Erythropoietin stimulation
- Myeloid Stem Cell (CFU-GEMM) differentiates
- Erythroblast
 - Huge nucleus
 Hemoglobin synthesis
- Normoblast
- Nucleus shrinks
- Hemoglobin quantity increases
- Reticulocyte (~1%) Once the nucleus is lost
- matures into an erythrocyte within 24-48 hours - remain in the bone marrow ~ 1 day and then are released into the
- circulation
- is a good indication of erythropietic activity

Hemoglobin A

- · 90% of RBC weight
- O2 carrying protein
- Oxyhemoglobin (Hgb that is carrying O2)
- Deoxyhemoglobin (reduced Hgb that has released its O2)
- Methemoglobin (unstable type of Hgb incapable of carrying O2)
- Heme 4 complexes of Fe + protoporphyrin
- Globin 2 pairs of polypeptide chains (amino acids)

Nutritional Requirements for Erythropoiesis

- · Proteins
- Vitamin B12
- · Folic acid (folate)
- Iron

Protein

- · Important structural component for the plasma membrane
 - Strength
 - Flexibility
 - Elasticity
- Amino Acid (polypeptide) chains form the Hgb

Vitamin B12

- · From animal products meat, shellfish, milk, eggs
- DNA synthesis, erythrocyte maturation, & facilitator of folate metabolism
- Intrinsic Factor (IF) needed for B12 absorption - IF is secreted by the parietal cells of the gastric mucosa
 - IF facilitates Vit B12 absorption in the ileum
- · B12 is stored in the liver until needed for erythropoiesis
 - B12 stores may last for several years

Folic Acid

- · From liver, yeast, fruits, leafy vegetables, eggs, milk
 - Fragile, significantly reduced by cooking
- Synthesis of DNA & RNA, erythrocyte maturation
- Not IF dependent
- · Absorbed in upper small intestine
- Minimally stored (few months at most)
- · Pregnancy increases folate demand

Iron

- From Liver, red meat, dried fruits, Dk green leafy vegetables, Enriched bread and cereal
 - $-\operatorname{Vitamin}\nolimits C$ is required for absorption
- Critical element for hemoglobin synthesis
- 67% is bound to Heme (Hemoglobin)
- 30% is stored as Ferritin or Hemosiderin
- 3% is lost daily in the urine, sweat, bile, and epithelial cells of the gut

Iron Cycle

- Dietary Iron absorbed from the small bowel (duodenum, and proximal jejunum)
- Transferrin carrier protein
- Bone Marrow Hemoglobin Synthesis
- Removed by MPS after ~120 days in Spleen
- Iron Recycling
- Ferritin and Hemosiderin are storage forms of iron
 - liver
 - spleen
 - macrophages in the bone marrow

Regulation of Hematopoiesis

- Erythropoietin secreted by kidney
- Tissue hypoxia is trigger

Destruction of Senescent Erythrocytes

- Destroyed by Macrophages in spleen and liver
- · Globin broken down into amino acids
- Heme
 - Catabolized to porphyrin
 - Reduced to Unconjugated Free Bilirubin
 - Transported to Liver by Albumin
 - Bilirubin is Conjugated in Liver
 - Excreted in Bile
 - Transformed in intestine by Bacteria into Urobilinogen
 Urobilinogen is excreted in Feces
 small amount excreted by kidneys
 - » small amount excreted by kidneys
 » and small amount is reabsorbed

Aging of Hematologic System

- Blood composition does not change
- · Decreased iron
 - Decreased intrinsic factor
 - Decreased total iron binding capacity (TIBC)
- · Erythrocyte membrane becomes fragile
- Lymphocyte function decreases
- Platelet numbers do not change, but clotting increases
 - Increased fibrinogen, and Factors V, VII, IX