
Healthcare Statistics for People Who Can't Do Math Good

Introduction
There are two major problems with statistics in healthcare.  The first is perpetrated by the researchers and
authors of  the articles.  Research is a high stakes game, in which careers are built and lost based on
publications.  Certain types of  results are more likely to be published than others, so even if  the research is
solid, authors are often tempted to �cook� their statistics to make them seem more than they are.  The
fancier the statistics (and the more of  them), the smarter the authors must be.  (Lies, Damned Lies, and
Statistics��Benjamin Disraeli.)  The second  problem with healthcare statistics concerns the reader or
consumer of  the statistics.  Most of  us took at least one statistics course but apparently it was such a
traumatic experience that we have blocked out any remembrance of  it.

If  you are one of  those poor traumatized souls, this chapter is written with you in mind.  We do need to
talk some basic statistics, but you will not be doing any number crunching.  You simply need to have an
understanding of  what the various statistics mean.

Review of Parameters and Statistics

As previously stated in Chapter x, a parameter summarizes a population of  interest, and a statistic
summarizes a study sample.  The same name is used for both the parameter and the statistic.  Each
response variable has a specific parameter and statistic associated with it.  In addition, each response
variable also has a distribution associated with it.  See Table 1.

Response Variable Statistic and parameter Distribution

Nominal Proportion Binomial, multinomial

Ordinal Median

Continuous Mean and standard deviation Normal (bell curve)

Nominal Response Variable Statistics

The statistic and parameter used to describe and summarize nominal response variables is the proportion
�usually described as a percentage, but other units are also possible.  For example, rare diseases are
sometimes reported as the number of  cases per 100,000.  If  there are only two possible responses for a
nominal response variable, only one proportion needs to be calculated, as the proportion of  the other
response can be calculated by subtracting the first from one.

For example, a study measures the number of  people who die in a years time, the proportion is calculated
as:

number of peoplewhodied

total number of people
�100=Proportionof those whodied

This above proportion is often called mortality.  To calculate the proportion of  those who did not die,
simply subtract the mortality from 100.  This proportion is often called survival.
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Ordinal Response Variable Statistics

Ordinal response variables are tricky creatures.  The best correct statistic to use is the median, which is the
middle response.  However, ordinal response variables are more often treated as either nominal or
numerical response variables when it comes to statistics.  Treating them as nominal response variables is
technically more correct than using them as numerical.

Numerical Response Variable Statistics

Numerical response variables require two parameters or statistics�the mean and standard deviation.
Warning: Technical Stat-babble ahead!  Because of  the law of  large numbers (large being more than 30 in
this case), samples that measure numerical response variables with resemble a normal distribution (often
called a bell curve when graphed).  In a normal distribution the three measures of  �central tendency�
(mean, mode, median) all happen to be the same number, so you only need one of  them�the mean.  In
addition to a measure of  central tendency, you also need a measure of  variance�the standard deviation.
Standard deviation is simply a measure of  how far from the mean the curve is shaped.  Large standard
deviations describe fat curves (with a lot of  variation), and small standard deviations describe thin curves
(with a small amount of  variation).

Generally speaking, a mean is calculated as follows:

sumof allmeasurements

number of measurements
=mean

Standard deviation is calculated by finding all the deviations (the difference of  each measurement minus
the mean).  The deviations are then squared (multiplied by themselves).  The squared deviations are then
added together and divided by the number of  measurements minus one (don't ask me why).  Then take the
square root of  that number, and that is the standard deviation.  

If  that seems like a lot of  work, it is, and I think that exercises like it are part of  the emotional scarring that
took place during statistics class.  The civilized way to take a standard deviation is to enter the numbers in a
spreadsheet and then enter the formula: �=stdev(cells with data)�.  

Additional note: One of  the interesting things about normal distributions is that ~68% of  all the
responses will fall within one standard deviation from the mean (±1 standard deviation), ~95% of  all
responses within two standard deviations, and ~99.7% within three standard deviations.  This seems to be
all that many people remember from statistics class.  The important thing to remember is that this is a
characteristic of  the normal distribution, not the definition of  the standard deviation itself.

Many a student has wondered why normal lab values vary from hospital to hospital.  The reason should be
apparent in the name�normal.  Normal lab values are traditionally defined as values within 2 standard
deviations of  the mean of  measurements.  Geographical and calibration issues result in minor differences
in the mean and standard deviation at each lab, causing slight but annoying differences (for the student
tasked with memorizing them).

Turning Numerical Response Variables Into Ordinal

A researcher may want to turn numerical response variables into categories.  For example, the researcher
may want to divide ages into ranges of  0 � 10, 11 � 20, 21 � 30, etc.  There are several advantages to this
approach.  For example, the researcher can compare one group to another quite easily this way.   

There are two basic approaches to converting numerical responses into categories.  One is predefined
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categories based on the possible values of  the response variable.  The age example above is one such
example.  The grading scale in the nursing program is another example.  A certain percentage in the course
is translated to an ordinal grading scale that is predefined based on the values recorded.  The other
approach is to allow the responses themselves to provide the categories.  For example, the data could be
divided into four groups, each containing a quarter of  the responses.  Or the data could be divided up into
10 groups, each group containing a tenth of  the responses.  This approach is often named according to the
number of  groups into which the data is divided.  See table below:

Name Number of  Groups Proportion in each group

Quartile 4 25%

Quintile 5 20%

Decile 10 10%

Percentile 100 1%

Generally speaking, numerical response variables should not be categorized for analysis (inference)
purposes, but it is may be useful categorized for reporting (descriptive) purposes.  Another purpose may be
to use a numerical response variable as a qualitative factor in a study with two research objectives.  For
example, study may have two 2 objectives�one studying the effect of  an intervention on blood pressure,
and another studying the effect of  blood pressure on stroke.  The researchers may want to categorize the
blood pressures into the JNC 7 classifications of  normal, prehypertension, and hypertension 1 and 2.

Statistics in Research

There are two basic types of  statistics reported in research: descriptive and inference statistics.  Descriptive
statistics simply describe the data collected, i.e., the sample.  Inference statistics assist the researcher (and
reader) in drawing a conclusion about the data and the population of  interest.  There are two types of
inference statistics: estimation and hypothesis testing. Only inference statistics will be discussed in this
chapter.  Basic assumption: Inference statistics can only lead to correct conclusions to the degree that the
sample is representative of  the population of  interest.

Estimation

Components of Estimation

Estimation is the simpler of  the two inference statistics and will be discussed first.  The purpose of
estimation is to estimate the population parameter using the sample statistic.  For example, a sample of  a
student population might be used to estimate the average age of  the entire student population.  

You are, in fact, already quite familiar with estimation, although you do not yet know it.  In your studies or
even your reading of  popular magazines, you have come across a statement that asserts something like,
�The expected weight loss is 5 ± 2 pounds.�  That is an estimation.

There are three components to estimation.  The first is the point estimate which represents the best guess
based on the data collected.  The next component is call the bound on error and is usually denoted by the
± symbol.  (The point estimate is the researcher's best guess, but it could be anywhere within the ± bound
on error.)  The final component is the confidence coefficient which has nothing to do with being
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confident.  The confidence coefficient represents the degree of  certainty that the true parameter falls
within the bound on error.  Put another way, if  the exact same study was done over and over again, the
confidence coefficient is the percentage of  time the true parameter would fall within the bound on error.

Confidence coefficient and bound on error are inversely related.  The more precise (smaller) the bound on
error, the less confidence the study will have.  The more confidence desired, the less precise (larger) the
bound on error must be.  In order to increase both precision (smaller bound on error) and confidence, the
research must increase the sample size.  There is one additional factor that must be taken into account�
the inherent variability of  the response variable.  If  large variation is expected, a larger sample must be
studied to obtain the same bound on error and confidence coefficient when compared to a response
variable with a smaller expected variability.  In healthcare research, a confidence coefficient of  95% is
encountered most often, but 90% and 99% may also be seen regularly.

The key to these components is that confidence and bound on error should be decided upon a priori, .i.e.,
before the research takes place.  The researcher should decide on an appropriate bound on error and
confidence coefficient before recruiting data collection begins.  The desired bound on error and
confidence along with the inherent variability of  the response variable will together influence the needed
sample size.  If  the researcher does not think that it is feasible to recruit the needed sample size, then the
researcher must decide whether to relax either the bound on error or confidence coefficient, or whether to
change the study or not conduct the study at all.

Calculating estimation

Calculating estimations is a fairly simple affair.  The researcher calculates the appropriate statistic which
becomes the point estimate.  The researcher then calculates standard error (SE), which is a measure of
variability adjusted for sample size.  The larger the sample size, the smaller the standard error.  The bound
on error for a 95% confidence coefficient is then calculated as 2 times the SE.

Estimation:  Point estimate ± 2SE

It is important to note the distinction between standard deviation and standard error.  Standard deviation is
a measure of  variability for continuous response variables.  Standard error is the variability adjusted for
sample size.  (Standard error is always smaller than standard deviation.)  When you see standard deviation
reported in a research article, it is descriptive.  When you see standard error reported in an article, it is usually
for inference purposes.

The formulas for calculating standard error are listed in the Table below for illustration only.  Note the
effect that sample size has on standard error.  This effect is more fully explored below in the the example.

Statistic (Response Variable) Standard Error Calculation

Proportion (nominal)

� proportion��1� proportion�sample

Standard Deviation (continuous) standard deviation

� sample

Estimation example

Estimation is actually quite simple for numerical response variables as long as you understand that concept
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of  standard error.  Standard error (SE) for continuous response variables is the standard deviation divided
by the square root of  the sample size (see table above).  For example, imagine you conducted a study of  36
students and measured their weight and obtained the following results:

Mean: 145 lbs
Standard Deviation 18 lbs

In this case, the standard error is calculated:

18

�36
=3

The estimation 95% confidence estimate of  weight then becomes 145 ± 6 lbs (2 times SE).  If  you did the
study again, this time with 81 students, the SE would be 2, so the estimation would be 145 ± 4 lbs.  As you
can see, increasing the sample size decreased bound on error, because the 95% confidence bound on error
is defined as 2 times the standard error, and the standard error is reduced by the square root of  the sample
size.  The table below shows the calculation of  90%, 95%, and 99% confidence levels.

Confidence coefficient Bound on error Example using data from above example (SE = 3)

90% 1.645 * SE Bound on error = 1.645 * 3 = ± 4.937

95% 2 * SE Bound on error = 2 * 3 = ± 6

99% 2.57 * SE Bound on error = 2.57 * 3 = ± 7.1

As can be seen above, the higher the confidence, the larger the bound on error (less precise).  In order to
have a more precise bound on error at a given confidence coefficient, the researcher can either increase the
sample size or reduce the variability of  the response variable usually by excluding subjects who may have
more inherent variability (inclusion/exclusion criteria).

Calculating a Confidence Interval

In our example above,  we estimated the average weight of  the student body as 145 ± 6 lbs with 95%
confidence.  The point estimate is 145lbs, and the bound on error is ±6 lbs.  If  we do the ±, we will obtain
the confidence interval.  So add 6 to 145 and subtract 6 from 145 to obtain the interval: 139 � 151 lbs.  Let
us assume for a moment, that we had calculated that our study has a confidence coefficient of  95%.  This
would mean that if  we repeated our study over and over again, 95% of  the time, the true average would
fall between 139 and 151 pounds.

The confidence interval helps to serve as a true world test of  the research in question.  If  the confidence
interval includes the number 0 (zero), it means the research is meaningless.  If  the confidence interval is
too big, it means the research is meaningless.  How big is too big?  It depends on the what is being studied.
You as the reader probably already have some threshold number in your head.  In the case of  weight, most
people seem to think that ± 2.5 or ±3 is meaningful, and that numbers above it are increasingly less
meaningful.  This brings us to an extremely important concept.  All of  the statistics in the world still
boil down to a subjective decision, �Is it meaningful or meaningless?�

Hypothesis Testing

Hypothesis testing is, by far, more complicated than estimation in its mechanics, but its interpretation is
actually rather simple.  Unfortunately, you have to have a basic understanding of  the mechanics.
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At its core, hypthothesis testing asks the question, �Is there a difference between these two (or more)
groups.�  Imagine for a moment that you ran a business selling weightloss counseling.  You want to test a
new program, so you measure a group's weight before they start the program and then again after the
program ends.  Your data is as follow:

Measurement Average Standard Deviation

Baseline 235 18

Post study 229 15

Obviously 229 is smaller than 235, but the question is whether the distributions of  weights is different
enough for the two measurements to be considered different.  So here are the steps to find out the answer. 

Step Task Example

1 Write the null hypothesis.  It is always stated as one group
equals another.

Baseline = Post study

2 Write the alternative hypothesis.  It's always an inequality, but
there's a choice (1 or 2 tailed; see below)

Baseline ≠ Post study

3 Decide on an alpha level and calculate power (beta) (see below) α = 0.05

4 Collect data, run the statistic, and get a p value. t test

5 Interpret the results

Throughout this process, there were several choices to be made.  

� The first choice to be made is whether our test should be a one tailed test or a two tailed test.  A
two tailed test tests the possibility that our post study group actually weighs more than the baseline.
The decision should not be based on whether you want it to come out a certain way or think it
should come out a certain way, but on what would happen if  it comes out the other way.  In this
case, you would want to know if  people actually gained weight during the study so that you could
modify or eliminate the new program (unless of  course the new weight is rock hard abs).
Practically, speaking the only reason to choose a one tailed test is because you can use smaller
sample sizes to get the same result.  Studies done with one tailed tests should be viewed with
suspicion.  (You may be asking yourself  why this matters, because anyone can see that the post
study weight was smaller than the baseline weight.  The reason is that the decision to use a one or
two tailed test should be made before data collection occurs.)

� The second choice is the determination of  alpha.  It is the acceptable level of  risk in being wrong
in rejecting the null hypothesis.  It is often called the risk of  a type I error.  Beta is the risk of  error
in accepting the null hypothesis.  Power is 1 � beta expressed as a percentage. (For example, a beta
of  .2 would be 1 - .2 = .8 = 80%.)  Power calculation is a gamble.  It takes a much larger sample
size to increase power than to to decrease alpha.

Most statistical tests, no matter how they are calculated will result in a p value.  To interpret the test, the p
value is compared to the alpha.  If  the p value is less than alpha, the null hypothesis is rejected and the
alternative hypothesis is accepted.  If  the situation becomes more complicated if  the p value is larger than
alpha.  In that case, one must consider beta (or power).  If  power was not considered, then the null
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hypothesis can neither be accepted nor rejected.  If  power was considered, then the null hypothesis can be
accepted with the degree of  confidence of  the power.  This thought process is represented in graphical
form below.  The interpretation from our weight loss example above is presented in the table below.

Situation Test result Interpretation

Situation 1 p < alpha We reject the null hypothesis, accept the alternative hypothesis and
conclude that there is a significant difference between baseline and post
study weight.

Situation 2 p > alpha;
power 80%

We accept the null hypothesis and conclude that there is no difference
between baseline and post study weights with 80% confidence.

Situation 3 P > alpha; no
power calculated

There is not enough evidence to accept or reject the null hypothesis.

Graphical Representation of  Interpretation of  Hypothesis Testing

As can be seen, it is advantageous to the researchers for a study to show significance, i.e., show a statistical
difference (p < alpha). Such studies do not require any worrying about power and are far more likely to be
published than studies that do not show significance.  Even if  power is calculated, the study may be
considered underpowered, meaning that the degree of  confidence in accepting the null hypothesis is rather
low.  The worse possible situation for a researcher is for the study not to show significance and not have
calculated power.  �There is not enough evidence...� is tantamount to an admission of  incompetence and
of  having wasted the money of  whoever funded the research.  Researchers in this position may choose not
to publish their results, call the study a pilot or feasibility study, or use creative statistics to try and make the
research look more interesting.
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Hypothesis Testing Considerations

When most English speaking people use the word significant, they think of  words such as important or
large.  When statisticians and researchers use the word significant, they mean statistical significance�that p
was less than alpha.  It says nothing about whether the difference was large or small.  Just as with
estimation, hypothesis testing also boils down to a subjective decision, �What is a meaningful difference?�
Imagine for a moment that you were going to try a new diet or weightloss plan.  How much weight would
you need to lose before you attributed the weightloss to the new diet and not simply fluctuations in water
balance and the precision of  the scale?

Researchers must go through a similar process when planning a study for hypothesis testing.  If  not
enough subjects are recruited, the researcher may find himself  in the embarrassing �not enough evidence�
situation.  If  the sample size is too large, the researcher may find that the results are �significant�
statistically speaking, but are meaningless practically speaking.  The Table below shows an example of  the
effect of  sample size on hypothesis testing.  The first blood pressure study measures 500 subjects in each
group and finds a highly significant statistical difference between the two groups even though the actual
means are only 0.1 mm Hg apart.  The researcher must then explain why even though the p value was
�significant� the actual difference was negligible.  Said another way, the research must explain the
difference between statistical significance and clinical (practical) significance.  Additionally, the researcher
will have wasted time and money that could have been used in other ways.  Conversely, the second blood
pressure study shows no statistical significance despite blood pressure means that are 25.2 mm Hg apart.
In this case, although the results are clinically meaningful, because there is no difference statistically, no
conclusions can be drawn.  Both kinds of  studies may be used to dupe unsophisticated readers, especially
when reported in the mainstream media.

Effect of  Sample Size on Statistical Significance

Sample size (per
group)

Drug A Mean
Systolic Pressure

Drug B mean
Systolic Pressure

Difference in
pressure

p value

500 140.2 140.3 0.1 mm Hg .001

10 124.6 149.8 25.2 mm Hg 0.31

Determining the proper sample  size for hypothesis testing is an important step in planning any research.
The determination with depend upon the alpha and power (beta) levels desired, one or two tailed test, the
inherent variability of  the response variable, and the minimum clinical (practical) difference.  In the end,
interpreting hypothesis testing depends on a subjective determination of  significance.

Choosing an Appropriate Statistical Test

This is an extremely complex topic and a detailed discussion is far beyond the scope of  this text. The
purpose of  this section is simply to impart an appreciation for some of  the considerations that go into
choosing a statistical test.  The table below lists some of  the more common statistical tests

Response variable Number of  Groups to be compared Statistical test

Nominal 2 or multiple Chi-squared (�2)

Continuous 2 t-test  (n < 30)

Continuous 2 z-test (n >30)
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Continuous 3 or more ANOVA

When choosing the appropriate statistical test, researchers often have multiple choices.  Some of  the
considerations involved include:

� Response variable

� Assumptions of  the data

� Robustness of  the test (will it give good results even if  the assumptions are violated)

� Sample size

� Number of  factors

� Number of  levels within a factor

Other Types of Inference Statistics

In addition to hypothesis testing and estimation, you may see other types of  statistics used in healthcare
research.  These include risk estimation (just an applied form of  estimation), correlations, and regression
analysis.  Each of  these will be examined in this section.

Risk Calculation

In healthcare research, risk refers to the probability that an individual may experience some outcome (often
negative, although statistically, risk can be calculated for positive outcomes as well).  There are two kinds of
risks that can be calculated�absolute and relative risk�and their meanings and interpretations are very
different.  Both kinds of  risk are essentially applied estimations.  The actual risk is the point estimate, and
should be accompanied by either a bound on error or a confidence interval.

By definition, risk calculations must use categorical (nominal and ordinal) response variables.  Numerical
response variables must be converted to ordinal.

An important characteristic of  risk calculations is that they should also be reported with a time frame and
population of  interest.  For example, a study that observes mortality over a one year period in elderly
adults who smoke can only be used to calculate risk for elderly patients who smoke over one year�not
young patients who smoke, and not risk over five years.

Absolute Risk

Absolute risk is the probability that any one member  of  the population will experience the studied
outcome within a certain time frame.  Its calculation is straightforward.  The risk is the number of
experimental units affected divided by the total number of  experimental units (the sample size).  The
resulting decimal may be reported as such or multiplied by 100 and reported in percent or multiplied by
larger numbers such as 100,000 when dealing with very small risks.

For example, researcher may want to study the effect of  smoking on the new diagnosis of  lung cancer over
a five year period.  The researcher obtains the following data (warning: made up statistics ahead).

Calculating Absolute Risk
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Smokers Non-Smokers Difference in Risk

Total Number studied 1000 1000

Number of  new
diagnoses of  lung cancer

100 10

Absolute risk
calculation

100

1000
�100

10

1000
�100

Absolute risk 10% 1% 10% � 1% = 9%

To reiterate, absolute risk is the probability that any one member of  a population will experience the
studied outcome.  It compares the individual to the individual's population of  interest.
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Relative Risk

Relative risk compares the probability of  an individual experiencing the studied outcome with the
probability of  another group.  For example, rather than simply calculating the risk of  a smoker being
diagnosed with lung cancer, relative risk calculates the risk of  a smoker being diagnosed with lung cancer
compared to the risk of  someone who is not a smoker.  Relative risk is calculated as the number of  exp units
experiencing the outcome in one population divided by the number who experienced the outcome in a
different population.  Using the same example as above, we see.

Calculating Relative Risk Ratios

Smokers Non-Smokers Difference in Risk

Total Number studied 1000 1000

Number of  new
diagnoses of  lung cancer

100 10

Absolute risk
calculation

100

1000
�100=10%

10

1000
�100=1%

10% � 1% = 9%

Relative Risk
RR=

�10% �

�1%�
=10

In the example above, the Relative Risk Ratio (RR) is calculated as 10% (absolute risk of  people who
smoked who were diagnosed with cancer) divided by 1% (absolute risk of  people who were diagnosed with
cancer who did not smoke).  The RR of  10 indicates that smokers are 10 times more likely to develop lung
cancer than non-smokers.  Note that the RR amplifies the risk when compared to Absolute risk.  If  you
were designing an ad for the Truth campaign (anti-smoking) which would you prefer to report?  �Smokers
have a 9% greater (absolute) risk of  being diagnosed with lung cancer� or �smokers have 10 times the
(relative) risk of  non smokers?�  And if  you are a tobacco executive, which would you rather have
reported?

This brings us to an interesting observation.  In healthcare research benefits of  interventions, drugs, and
treatments are almost always reported as relative risk to amplify the perceived benefit.  Meanwhile, adverse
effects are almost always reported as absolute risk in order to minimize their impact.

Trivial Not: Hazard ratios (HR) are essentially relative risk ratios that represt risk of  death (or other
negative event). They are sometimes referred to as  Cox Hazard Ratios (David Cox was a statitician who
devised a method of  calculating HR).  Relative risk ratios also have a cousin, the odds ratio, which is
calculated differently and somewhat more difficult to interpret.  Generally speaking, relative risk ratios are
used for prospective studies and Odds ratios (OR) are used for retrospective studies (especially Case
Control).  However, many authors, especially in foreign journals (and the mainstream media) seem to use
the terms interchangeably.

For a more thorough (but basic discussion, you may consider the following websites: 

� http://www.childrensmercy.org/stats/journal/oddsratio.asp

� http://itre.cis.upenn.edu/~myl/languagelog/archives/004767.html
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Relative Risk vs. Absolute Risk

The most important thing to keep in mind is that relative risk by itself  is meaningless.  It has to be
accompanied by absolute risk.  In the example above, the five year risk of  lung cancer for smokers was ten
times higher than for non smokers, but does this number in and of  itself  tell us anything?  Before you
answer consider the following examples.

Imagine for a moment that the study that estimated the RR of  lung cancer for smokers had the following
data:

Relative Risk vs Absolute Risk: Example 1

Smokers Non-Smokers Difference in Risk

Total Number studied 100,000 100,000

Number of  new
diagnoses of  lung cancer

100 10 RR = 100/10 = 10

Absolute risk
calculation

100

100000
�100=0.1%

10

100000
�100=0.01%

0.1% � 0.01% = 0.09%

Absolute risk
RR=

�0.1%�

�0.01%�
=10

In the case above, although the relative risk of  cancer is 10 times greater for smokers than non-smokers,
the absolute risk is so small that most smokers are likely not to care.  Now imagine another scenario:

Relative Risk vs Absolute Risk: Example 1

Smokers Non-Smokers Difference in Risk

Total Number studied 100 100

Number of  new
diagnoses of  lung cancer

100 10 RR = 100/10 = 10

Absolute risk
calculation

100

100
�100=100%

10

100
�100=10%

100% � 10% = 90%

Absolute risk
RR=

�100%�

�10%�
=10

In this case, the Relative risk is exactly the same as in the example above, but now the absolute risk is
100%.  That would make a compelling reason for smokers to stop smoking.  Interestingly, many studies
only report relative risk and not absolute risk.  In this author's opinion, that amounts to academic
malpractice, and any such research and author should be viewed with the highest suspicion.

One of  the most egregious examples of  this kind of  omission is the NIH Workshop Summary: Scientific
Evidence on Condom Effectiveness for Sexually Transmitted Disease (STD) Prevention (2000).  Forty-
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nine pages of  text culminates with this statement, �From the two incidence estimates, consistent condom
use decreased the risk of  HIV/AIDS transmission by approximately 85%. These data provide strong
evidence for the effectiveness of  condoms for reducing sexually transmitted HIV (p. 17).�

The relative risk of  becoming infected with HIV is 85% less when using a condom consistently compared
to...actually, they forgot to tell the comparison group.  Is the comparison to couples never using a condom?
Or couples using a condom inconstistently?  More importantly, however, the Absolute risk is not reported.
The government spent millions of  dollars on condom research to issue a report that lacks the one piece of
information that would allow intelligent citizens to make an informed decision in their personal lives.

In your research critiques, if  you encounter relative risk without absolute risk, or at least the raw data to
compute it on your own, show them no mercy.

Estimating Relative Risk as Opposed to Hypothesis Testing

Traditionally, if  a researcher wanted to know if  a study factor made a difference, hypothesis testing would
have selected as the statistical method.  A relatively new (more than 20 years now) and growing trend is to
use relative risk and confidence intervals to instead of  hypothesis testing.  Some studies will use both
techniques.  A brief  explanation follows.

The most important thing to remember is that a Relative Risk ratio of  one (1) represents no increase or
decrease in risk, i.e., the two groups are the same. For example, if  one wanted to study the effect of
drinking Dasani vs Pepsi on the incidence of  GI upset in one month, one might find the following
information:

Dasani Pepsi Difference in Risk

Total Number studied 100 100

Reports of  GI upset 10 10
RR=

�10% �

�10% �
=1

One can easily see that if  the proportions are equal, that the the relative risk equal one.  Now combine that
knowledge with the confidence intervals discussed above in the estimation chapter.  If  the 95%
Confidence Interval (CI 95) includes 1, then the relative risk is considered non-significant.  If  the CI 95 is
greater than 1, it represents greater risk and is sometimes called a positive risk factor.  If  the CI 95 is less
than 1 it represents lower risk and is sometimes called a negative risk factor.  In addition to reporting the
relative risk and 95% confidence intervals, some studies will also report p values representing a test for
statistical significance.

Visual Representations of Relative Risk

Relative risk and confidence intervals are often simply listed in a table as shown below (Risk Ratio Table).
However, these can be cumbersome to interpret.  Visual representations allow reader to quickly interpret
the results.  There are two visual representations that are often used to graphically display relative risk: a
specialized bar graph and the Kaplan Meier Curve.

The specialized bar graph makes interpreting many risk ratios very quick and simple.  The vertical line
represents a risk ratio of  1 (equal risk).  Any risk ratio confidence interval that touches or crosses the line is
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considered non-significant.  Any confidence interval that is to the left of  the line represents decreased risk.
Any confidence interval to the right of  the line represents increased risk.  In the example below, being
male, above age 60, hypertension, diabetes, ECG abnormalities, family history, and smoking all increased
risk of  myocardial infarction.  Alcohol consumption decreased risk of  myocardial infarction.  Being less
than 54, obesity, renal disease, and hepatic disease were all non significant.

Risk Ratio Table
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Confidence Interval Bar Graph
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The Kaplan-Meier Survival Curve simply plots the percentage of  surviving study members over time.  It
allows the reader to visually appreciate the difference in risk.  Additionally, it gives a time appreciation for
the data, showing when the differences occur.  In the figure below clearly shows that group 2 begins dying
much more quickly than group 2, and that 50% of  group 2 is still alive after all of  group 1 has died.

Kaplan-Meier Survival Curve

Correlation

Correlation is the statistical linear relationship between two variables.  The correlation coefficient is
represented by the lower case letter "r" and represents the slope of  the line.  Positive correlations mean the
variables both increase together.  Negative correlations mean one variable increases as the other decreases.
The strongest correlations are r=1 and r=-1.  The weakest correlation is 0.  What constitutes a "strong
correlation" varies by discipline.  Biological sciences consider correlations of  .9 and higher as strong,
whereas psychology has typically accepted correlations of  .3 and higher as strong.

An important thing to keep is mind is that the strength of  a correlation can strongly be affected by outliers.
(I'll need pictures to explain this one, so if  you want to know more, ask me at school.)

In addition to the correlation coefficient, correlations are also described by a p value that represents the
statistical significance of  of  the relationship.  Low p values indicate that there is a small chance that the
data represents randomness and not a correlative relationship, while large p values indicate that there is a
greater likelihood that the data represents randomness.  Interpreting correlative p values follows the same
rules as hypothesis testing (see above).

The key thing to remember is that correlation does not equal causation and in fact the two variables may
have no direct relationship to one another.  A classic example is the finding that there is a positive
correlation between ice cream sales and rape.  The unsophisticated user of  statistics might infer that one is
caused by the other.  In fact, both are co-correlates with at least two other variables: temperature and
number of  daylight hours.  (This needs lots of  development.)
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Co-correlates in research.  

When collecting data for research, it is important to reduce the amount of  co-correlates.  For example,
weight is related to height and also to age.  If  trying to study the effect of  age on weight, height must also
be accounted for.  This is the reason for using Body Mass Index (BMI), as it takes into account both height
and weight.

Regression

Regression is the use of  statistical models to explain the variation in data.  The regression model is
represented by the letter r-squared and represents the amount of  variation that is explained by the model.
Imagine for a moment that you were studying the effect of  age on height in children.  You measured
multiple subjects as they aged, and recorded their height and age.  Then you create a model to explain the
variations in height.  If  the regression model's r-squared is 0.83, that means that 83% of  the variations in
your data are explained by your age model.  The remaining variation is unexplained.  The value of
regression models is that they can not only be used to explain existing data but also to predict uncollected
data with a known degree of  confidence or statistical certainty.  The model also has a p value.  The best
models will have high r-squared and low p values.

The simplest regression is simple linear regression (of  which there is nothing simple nor linear).  Recall
from Algebra II that parabolas are considered linear even though they curve.  What makes it "simple
linear" is that the model contains only one variable and may be represented by a single line (or curve) on a
graph.

Suppose for a moment that you realize that there is more to height than simply age.  Perhaps you want to
include other variables such as average daily calories and parental height.  You now have a more
complicated model and have entered the realm of  multiple regression.

How do you know you have the best model?  You don't.  Generally speaking, regression modeling is a trial
and error process.  The researcher must trade off  the accuracy of  the model with the amount of  time and
energy it takes to collect the additional data and compute the various models.

The two key sins of  regression are not using enough data points and extrapolation.  The first sin is
usually caused by budget and time constraints.  Each study is different, but generally, at least 30 data points
should be used for numerical response variables.  The more complicated the model and the greater the
variation in data, the greater the number of  data points that should be used.  A power analysis should be
done before the study begins to determine the appropriate number of  data points (subjects).  The second
sin is far more insidious and surrounds us daily.  

Imagine for a moment, that with your study of  age and height in children, you were able to come up with a
model that has a very high r-squared and a very low p value.  Using your model you have been able to
successfully predict the height of  all kinds of  children not in your original study.  At what point should you
start using your model to predict the height of  30 year-olds?  or 60 year olds?  Using this common
example, it is quite easy to see that the age-height relationship does not survive past lat adolescence, and
using a model based in child height is not helpful to predict adult height at given ages.  Making predictions
beyond the data that went into the model is called extrapolation.  

This same fallacy is seen every day in science and health care.  It is seen in Global Warming models.  It is
seen in recommendations that 20 year olds take statins.  Predictions based on extrapolation may or may not
be accurate, but there is simply no way to judge a priori whether they are.  Serious researchers should take
every effort not to base their findings, predictions, or recommendations on extrapolation.  And if  they do
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base their recommendations on extrapolation, they should take extra care to alert others to the potential
for error.

Logistical regression

Logistical regression is nothing more than regression modeling for nominal variables.  The result of
logistical regression is an odds ratio (not the same as risk ratio*).  Logistic regression requires more data
points than linear regression or multiple regression.

*See page 11.
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