Antimicrobials: Drugs that Weaken the Cell Wall

Cell Wall Weakeners
- Beta Lactams
 - Penicillins
 - Cephalosporins
 - Carbapenems
 - Aztreonam
- Vancomycin
- Teicoplanin

Bacterial Cell Wall
- Bacterial cytoplasm is hypertonic
 - Tendency to swell and lyse
- Cell wall is a rigid layer outside the membrane that prevents swelling
- Basic structure:
 - Peptidoglycan polymer chains
 - Crossbridges hold chains together
 - Transpeptidases: bacterial enzymes needed for cell wall synthesis
 - Autolysins: enzymes that break down the cell wall

Penicillin: Basic Method of Action
- Penicillin Binding Proteins (PBPs):
 - Penicillin targets: located on membrane
- Inhibits transpeptidases: weakened, abnormal cell wall
- Prevents inhibition of autolysins: destruction of cell wall
- To work, PCNs must
 - Penetrate cell wall
 - Bind to PBP

Bacterial Resistance to PCNs
- Inability of PCN to reach PBP (i.e. inability to penetrate the cell wall, esp gram neg)
- Inactivation of PCN by enzymes (penicillinases and beta-lactamases)
 - Genes for penicillinases are located on both chromosomes and plasmids
- Less common mechanism of resistance to PCN: alteration of PBP structure

PCN Classification
- Most common classification is by spectrum
 - Narrow spectrum
 - Penicillinase vulnerable
 - Penicillinase resistant (anti-staphylococcal)
 - Broad spectrum
 - Extended spectrum
Prototypical PCN

- Pencillin G: first discovered
 - Bacteriocidal to gram + and some gram –
 - Narrow spectrum
 - Penicillinase senstitive (vulnerable)
- Uses:
 - Pneumonia and meningitis (strep pneumo)
 - Strep pyogenes (strep throat, scarlet fever, endocarditis, flesh eating bacteria)
 - Syphilis (Treponema pallidium)

PCN G: Pharmacokinetics

- Availability as salts: potassium, procaine, benzathine
- Absorption
 - PO: no can do; inactivated by gastric acid
 - IM: potassium salt is rapidly absorbed; procaine and benzathine last up to a month but cause low blood levels
 - IV: only potassium salt can be given IV

PCN G: Pharmacokinetics

- Distribution
 - Most tissues
 - Crosses joints, eys, and BBB only with inflammation, e.g. meningitis
- Elimination
 - Through kidneys
 - Adjust dose in renal insufficiency or failure

Side effects and Toxicity

- Least toxic of all antibiotics
 - Most side effects are caused by salt
 - Potassium may cause dysrhythmias
 - Procaine may cause bizarre behavior
 - Allergic reaction is the major concern
 - 1% – 10% of population is allergic
 - Mild to life threatening reactions
 - Prior exposure is needed; *occurs naturally
 - Medic alert bracelet

PCN Allergy

- 5% - 10% of PCN allergy is cross-reactive
- Allergy is not to PCN itself, but to breakdown products
- Types
 - Immediate: 2 – 30 minutes
 - Accelerated: 1 – 72 hours
 - Late: days to weeks
- Anaphylaxis is possible (0.02%)

Treatment of Patients with PCN Allergy

- Verify reaction
- Avoid PCN
- Mild reactions: cephalosporins may be tried (5% - 10% cross reactivity)
- Severe reactions: use vancomycin or macrolide
- If no other alternative, desensitization may be tried. Administer with antihistamines; epinephrine on hand PRN
PCN Interactions

- Aminoglycosides: inactivates if mixed in same IV solution with PCN
- Probenecid causes PCN retention in kidneys
- Bacteriostatic antibiotics decrease efficacy of PCN

Other narrow Spectrum PCN

- Penicillin V (aka VK)
 - Same as Penicillin G, but can be given orally
 - May be taken with meals

Narrow Spectrum Penicillinase Resistant PCNs

- Used for staphylococcus
- 90% of staph produces penicillinase
- MRSA: resistance by altering PBPs
- Agents
 - Nafcillin, Oxacillin, Cloxacillin, Dicloxacillin
 - Methicillin (no longer available in U.S.)

Broad spectrum Penicillins (aka Aminopenicillins)

- Same action as Penicillin G plus increased activity against gram-negative bacilli
 - H. influenzae, E. coli, Salmonella, Shigella
 - Penetrate cell wall better
 - Vulnerable to Penicillinase
- Agents
 - Ampicillin
 - Amoxicillin (most popular penicillin)
 - Bacampicillin

Extended Spectrum PCNs

- Activity includes Aminopenicillins plus:
 - Pseudomonus, Enterobacter, Proteus, Klebsiella
 - Vulnerable to penicillinase
 - Primarily used for Pseudomas aeruginosa, often in combo with aminoglycosides (don’t mix!)
- Agents
 - Ticarcillin, Carbenicillin indanyl, Mezlocillin, Piperacillin

PCN/beta-lactamase inhibitor Combos

- Enhances action of PCN against penicillinase producing bacteria
- Unasyn: Ampicillin + sulbactam
- Augmentin: Amoxicillin + clavulanic acid
- Timentin: Ticarcillin + clavulanic acid
- Zosyn: Piperacillin + tazobactam
Cephalosporins

- Beta-lactam antibiotics
 - Similar in action to PCN
 - More resistant to Beta-lactamases
 - Broad spectrum
 - Low toxicity
- Mechanism of action
 - Same as penicillin
- Resistance: usually beta-lactamase

Cephalosporin Classifications

- Four Generations: as progress:
 - Increased gram negative activity
 - Decrease gram positive activity
 - Increased resistance to beta-lactamases
 - Increased ability to cross BBB
- See table 81-2 on page 899
- Only one drug currently in fourth generation

Cephalosporin Pharmacokinetics

- 24 Cephalosporins in U.S.
 - 12 can be given PO
 - 2 can be given PO as well as IM/IV
 - Some can be given PO, and some IM/IV
- Distribution: high to most areas; CSF is not reached with generations 1 and 2.
- Elimination: kidney; renal dosing in failure
 - Exception: Ceftriaxone and cefoperazone hepatic elimination

Adverse Effects

- Allergic reactions: maculopapular rash after 2 – 3 days is most common; severe immediate reaction is rare
- Cross reactivity with PCN
- Bleeding: cefmetazole, cefoperazone, cefotetan can interfere with Vit K metabolism
- Thromboplebitis: dilute and infuse slowly to avoid

Cephalosporins: Interactions

- Probenecid: delays renal excretion
- Alcohol: three drugs that interfere with Vit K metabolism may induce ETOH intolerance
- Anti-coagulants

Cephalosporins: Uses

- 1st and 2nd Generation are usually used prophylactically in hospital, not for active infections
- 3rd Generation used for a variety of infections
 - Meningitis, Pneumonia, Nosocomial infections
 - Ceftriaxone especially popular in ER because it can be given one dose IM
- 4th Generation is still being established
Cephalosporin use

• 24 to choose from; how do you choose?
 – Cost, dosing schedule, patient setting
• Recognize:
 – Cephalexin
 – Cefazolin
 – Cefuroxime
 – Cefaclor
 – Ceftriaxone
 – Ceftazidime
 – Cefepime

Carbapenems

• Beta-lactam antibiotics with broadest spectrum; IV or IM only
• Used for mixed infections with anaerobes, staph, and gram-negative bacilli
• Agents
 – Imipenem (given with cilastin to prolong effects)
 – Meropenem
 – Ertapenem

Monobactam (a class of one)

• Aztreonam
 – Beta-lactam antibiotic
 – Narrow spectrum: only gram negative bacilli
 – Highly resistant to beta-lactamase

Vancomycin (A drug without class)

• Does not contain beta-lactam
• Used for:
 – MRSA
 – Pseudomembranous colitis (c. diff)
• Poor PO absorption: used for c. diff
• Usually given IV. Low therapeutic range
 – Potentially toxic: ototoxic, thrombophlebitis, nephrotoxic
 – Must monitor levels
 – Infuse over 60 minutes to avoid histamine reaction

Teicoplanin

• Investigational drug
• A better vancomycin?
 – Active against MRSA
 – Fewer side effects
 – IM injection possible
• Therapeutic niche has not yet been established