Diabetes Mellitus

Normal Insulin Synthesis
- Prosinsulin is produced in the beta cells
- Before secretion, prosinsulin cleaved into
 - Insulin
 - Connecting peptide (aka C-peptide)
- Effects—Stimulates:
 - Uptake of glucose, amino acids, nucleotides, potassium
 - Synthesis of complex molecules: glycogen, proteins, triglycerides

Insulin Use
- Type I Diabetes
- Type II Diabetes with pancreatic failure
- Diabetic Ketoacidosis
- Hyperkalemia
- Sources:
 - Bovine: no longer produced in U.S.
 - Porcine: may be allergenic
 - Recombinant (Human): most common in U.S.

Types of Insulin
- Natural (Regular)
- Faster than normal
 - Lispro (Humalog)
 - Insulin Aspart (Novolog)
- Slower than normal
 - NPH
 - Semi-lente, Lente, Ultralente
 - Insulin Glargine (Lantus)
- Mixtures
- Primary difference between types of insulins is water solubility
 - The less soluble, the longer it takes to absorb
 - The longer it takes to absorb,
 - More prolonged the effect
 - Slower onset
 - Allergic Potential
 - NPH: protamine is a foreign substance
 - All are given SQ only except
 - Regular insulin may be given IV
 - Intranasal inhalation is being researched

Types of Insulin
- Allergic Potential
 - NPH: protamine is a foreign substance
 - All are given SQ only except
 - Regular insulin may be given IV
 - Intranasal inhalation is being researched
Pharmacokinetics

- Drug | Onset (min) | Peak (hrs) | Duration
- Regular | 30 – 60 | 1 – 5 | 6 – 10
- Lispro | 15 – 30 | 0.5 – 2.5 | 3 – 5
- Aspart | 10 – 20 | 1 – 3 | 3 – 5
- Lente | 60 – 180 | 6 – 14 | 16–24
- NPH | 60 – 180 | 6 – 14 | 16–24
- Ultralente | 240 – 360 | 8 – 20 | 24–28
- Glargine | 70 | none | 24

Pharmacokinetic Considerations

- How fast does it work?
- When should the patient eat?
- How long does it last?
- When should it be given again?
- When should glucose be checked?
- How do I mix it?
- Forget clear to cloudy!!!
- It’s a good way to kill a body!!!
- Glargine is clear, but can NOT be mixed!!!

Ideal Insulin Replacement Pattern

Profiles of Human Insulins and Analogues

Other Considerations

- Concentration
 - U-100 (100 unit/ml) most common in U.S.
 - U-500 (100 unit/ml) special order for patients requiring > 200 units/day
 - U-40 (40 unit/ml) no longer available in U.S.

- Injection
 - Clear: in solution; do not require agitation
 - Cloudy: suspension; must be gently agitated

- Site Regions: back of arm, legs, abdomen
 - Sites vs. regions

Other Considerations

- Only mix compatible insulins
- Store unopened vials in refrigerator
- Opened vials may be stored unrefrigerated up to 4 weeks
 - Keep away from sunlight or excessive heat
 - DON’T put it in your glove compartment in Florida
 - Prefilled syringes should be stored needle up
Delivery Systems

- Old fashioned syringe and needles
- Pen injectors
- Jet injectors

Portable Insulin Pumps
- Administers basal plus meal bolus
- Change sets every three days
- Microdeposits of crystalline insulin impair absorption

Implantable Insulin Pumps
- Intranasal: only 10% of dose is absorbed

Tight Control of Hyperglycemia

- DCCT (DM-1)
 - Intensive Insulin therapy
 - 50% less kidney disease
 - 35 – 56% less neuropathy
 - 76% less ophthalmic complications
 - Drawbacks
 - Risk of hypoglycemia
 - Cost 1700/year vs. 4000/year

- UKPDS (DM-2)
 - Improvements not quite as dramatic

Bottom line: tight control = ↓ microvascular complications

Dosing

- Insulin Dosing must be matched to need
- Factors
 - Insulin Resistance
 - Current production of insulin
 - Caloric intake
 - Situation
- Increases of Insulin Need
 - Infection, stress, obesity, growth spurt, sedentary, 2nd and 3rd trimester pregnancy
- Decreases of Insulin Need:
 - Exercise, 1st trimester pregnancy

Typical Daily Dosages

- 0.1 U/kg – 2.5 U/kg+
- DM-1
 - Initial 0.5 – 0.6 U/kg
- DM-2
 - Initial 0.2 – 0.6 U/kg

Dosing Schedules

- SSI (Sliding Scale Insulin)
 - Usually used while establishing stable dose
 - Also used in Hospital
- Conventional
 - 2/3 of dose in morning, 2/3 in evening
 - NPH or Lente plus Regular
- Intensive
 - Regular used for meals, Ultralente at bed time
 - Lispro used for meals, Glargine used for basal
- Continuous – insulin pump

Complications

- El numero uno: Hypoglycemia: glucose < 50
- Sympathetic response: rapid fall in glucose
 - Tachycardia, palpitations, sweating, nervousness, irritability
 - Blunted by beta blockers
- CNS origins: develop later
 - Headache, confusion, drowsiness, fatigue
 - Convulsions, coma, death
- Pseudohypoglycemia
Hypoglycemia Treatment
- If conscious: PO
 - Orange juice, glucose tablet, honey, non-diet drink
 - Glucagon
 - D50W
- Awareness, Awareness, Awareness
 - Preparation
 - Monitoring
 - Medic Alert bracelet

Other Adverse Effects
- Lipodystrophies
 - Change in subcutaneous fat deposits d/t SC injection
 - Lipoatrophy or Lipohypertrophy
- Allergic reactions
- Drug Interactions
 - Hypoglycemic agents (incl ETOH)
 - Hyperglycemic agents
 - Beta blockers

Oral Hypoglycemics and Misc DM topics

Oral Hypoglycemics
- Secretagogues – aka Squeeze that pancreas
 - Sulfonylureas
 - Meglitinides
- Liver Modifiers
 - Biguanides
- Insulin sensitizers
 - Thiazolidinediones (TZDs)
- Inhibit carb absorption – aka pass the beano
 - Alpha-Glucosidase Inhibitors

Sulfonylureas
- First Oral Hypoglycemics discovered
- Trying to make a better sulfonamide
 - Share cross-sensitivity
- Two generations
 - 2nd generation more potent (mg for mg comparison)
 - 1st generation takes 100s to 1000's of mg
 - 2nd generation take 2 – 40 mg (smaller pills)
- Hardly ever see 1st generation any more

Therapeutic Use
- Mechanism of Action
 - Stimulates beta cells to secrete insulin
 - Will not work in absence of functioning beta cells
 - Do not work for Type I DM
 - May not work in late Type II DM
- Therapeutic Use
 - **Adjunct** to lifestyle modification
- Kinetics
 - Readily Absorbed PO
 - Hepatic metabolism
 - Duration ranging from 6 hours to 3 days
Adverse Events

- **Hypoglycemia**
 - Usually mild, but can be fatal
 - Caution in patients with liver dysfunction
 - Educate
- **Weight gain**
- **Pregnancy and Lactation no-no**
- Limited evidence that patients treated with sulfonylureas until pancreas failure are more likely to have CV events
- Interactions: ETOH, hypoglycemics, beta blockers

Sulfonylureas

- **1st generation**
 - Tolbutamide (Orinase) 6 hr duration
 - Acetohexamide (Dymelor) 12 - 24 hr duration
 - Tolazamide (Tolinase) 12 - 24 hr duration
 - Chorpramide (Diabinase) 24 - 72 hr duration
- **2nd Generation**
 - Glipizide IR & SR (Glucotrol) 12 - 24 hr duration
 - Glyburide IR & SR (several) 12 - 24 hr duration
 - Glimepiride (Amaryl) 24 hr duration

Meglitinides

- Newer secretagogues
- Similar action to sulfonylureas
- Shorter durations 2 and 4 hours
- Rapid onset: 0 – 30 minutes
 - PATIENT MUST EAT WITHIN HALF HOUR!!!
- Fewer side effects
- Control PPG better than FPG
- Will not work in patients who do not have functioning beta cells
- Repaglinide (Prandin) and Nateglinide (Starlix)

Biguanides: Metformin

- Only one in United States: Metformin (Glucophage, Glucophage XR)
- Mechanism of Action
 - Decreases gluconeogenesis of liver
 - Enhance glucose uptake by muscle cells
-Kinetics
 - Absorbed slowly PO
 - Excreted by kidneys do not use in insufficiency

Therapeutic Uses

- Glycemic control
 - Combination with TZD and/or secretagogue
 - Synergistic glucose lowering
 - May be used effectively in patients who require insulin (lowers needed insulin amount)
 - Does not cause hypoglycemia
 - May prevent progression of prediabetes in younger, obese patients
 - Exercise and diet is better
 - May be related to side effects
- Gly set: usually subsides over time
 - Decreased appetite
 - Nausea, diarrhea
- Weight loss
- Toxicity: Lactic Acidosis: emergency
 - RI
 - Liver disease, severe infection, shock, heart failure
 - Educate symptoms: hyperventilation, myalgia, malaise, unusual somnolence
Preparations
- Immediate release: BID – TID dosing
- Extended release: QHS dosing
- Combination
 - Glyburide: Glucovance
 - Glipizide: Metaglip
 - Rosiglitazone: (Avandamet)

TZDs (-glitazones)
- Mechanism of Action
 - Increase sensitivity to insulin
 - Animal models: ↑muscle glucose uptake and ↓liver glucose production
 - Takes several weeks for effects to develop
- Therapeutic Use
 - Lower glucose
 - Used alone or in combination with sulfonylurea, insulin, metformin
 - Do not cause hypoglycemia
 - Kinetics: well absorbed, metab in liver

Adverse Effects
- Fluid retention
 - Edema
 - May push someone over the edge of heart failure
 - Caution in mild HF: monitor daily weights
 - Contraindicated in Severe HF
 - Dose dependent
- Caution with Insulin
- Mixed Lipid effects
- LFT monitoring

TZDs
- Agents
 - Rosiglitazone (Avandia, Avandamet)
 - Pioglitazone (Actose)
- Were considered third line agents
- Beginning to be seen as first line

Alpha-Glucosidase Inhibitors
- Mechanism of Action
 - Inhibits enzyme responsible for breaking oligosaccharides and complex carbohydrates into monosaccharides
 - Delays absorption of dietary absorption of carbohydrates
- Uses
 - Adjunct to lifestyle modifications and/or insulin, metformin, sulfonylurea
 - Works very well
 - Does not cause hypoglycemia

Adverse Effects
- GI effects
- Decreases iron absorption
- Complicates hypoglycemic treatment
 - Can't use sucrose based oral products
- Liver dysfunction
- Agents
 - Acarbose (Precose)
 - Miglitol (Glyset)
Ketoacidosis Management

- Insulin replacement: usually IV
- Bicarbonate
- Water replacement
- Monitor Sodium and Potassium
 - Replace as appropriate
- Careful monitoring of glucose levels

Glucagon

- Used to treat hypoglycemia d/t insulin overdose
 - Moderate Hypoglycemia
 - Glucose (D50W) is preferred for severe
 - Oral glucose for mild
 - Will not work for hypoglycemia d/t anorexia
- Administer SC, IM, IV
 - Takes ~20 minutes before arousal