Renal Disorders

Renal Functions
- Cleanse ECF
- Maintain acid-base balance
- Excretion of metabolic wastes
- Maintenance of blood volume (pressure)

A&P of the Kidney
- Nephron is the basic functional unit of the kidney

Nephron
- Glomerulus
- Proximal Convoluted tubule
- Loop of Henle
- Distal convoluted tubule
- Collecting duct

Kidney Processes
- Filtration –
 - Occurs in glomerulus
 - passive, nonselective
- Reabsorption
 - active transport, water follows solute
- Active tubular secretion
 - Proximal convoluted tubule
 - Acid pumps
 - Base pumps

Reabsorption
- Proximal Convoluted Tubule
 - 65% of Na and Cl
 - Virtually all bicarb and K
- Loop of Henle
 - 20% of Na and Cl
 - Descending – permeable to water
 - Ascending – not permeable to water
- Distal
 - 10% of Na and Cl
Reabsorption

- Late distal Convoluted Tubule and Collecting duct
- Sodium-potassium exchange – aldosterone
 - Actually causes more pumps to be made
- Final concentration of urine – ADH
 - Controls water permeability of collecting duct

Diuretics

- Most work by inhibiting reabsorption of NaCl
 - Earlier in the tubule they work, the stronger
 - Fun with Math
 - 180 liters of filtrate produced daily
 - 1% blockade of NaCl \(\Rightarrow 1.8 \) liters urine
 - 3% blockade of NaCl \(\Rightarrow 5.4 \) liters urine
 - 12 pounds in one day

Diagnostic and Laboratory

- Blood Urea Nitrogen (BUN): 10 – 20
- Creatinine: 0.7 – 1.2
- Creatinine Clearance
- Variety of Urinalysis tests
 - pH
 - Specific gravity
 - Presence of Proteins, Blood, Urobilinogen, Leukocytes, Bacteria, Glucose, Ketones
 - Microscopic examination

Adverse Impact

- Hypovolemia
- Acid-base imbalance
- Electrolyte imbalance
- Mitigating
 - Use short acting
 - Timing

Diuretics

- High Ceiling (Loop) diuretics
- Thiazide diuretics
- Potassium-sparing
 - Aldosterone antagonists
 - Non-aldosterone antagonists
- Osmotic Diuretics
- Carbonic anhydrase inhibitors (not used for diuresis; used for IOP)

Loop Diuretics

- Act in ascending loop of Henle
- Strongest
- Drugs
 - Furosemide (Lasix)
 - Bumetanide (Bumex)
 - Torsemide (Demadex)
 - Ethacrynic acid (Edecrin)
Furosemide (Lasix)
- **Pharmacokinetics**
 - PO onset 60 minutes, duration 8 hours
 - IV onset 5 minutes, duration 2 hours
 - Hepatic metabolism, renal excretion
- **Therapeutic uses**
 - Pulmonary edema
 - CHF
 - Edema
 - Hypertension
 - Work even with severe renal impairment

Adverse effects
- Hyponatremia, Hypochloremia, Dehydration
- Hypotension
 - Monitor BP at home
 - Get up slowly
- Hypokalemia
- Ototoxicity
- Hyperglycemia – caution in DM
- Elevated uric acid
- Lipids, Calcium, Magnesium

Drug Interactions
- Digoxin
- Ototoxic drugs
- Potassium sparing diuretics
- HTN drugs
- NSAIDS

Thiazide Diuretics
- Hydrochlorothiazide (HCTZ)
- Action – blocks NaCl in early DCT
 - Do not work when GFR < 15-20 mL/min
- **Pharmacokinetics**
 - PO, Onset 2 hours, peaks 2 – 6 hours
 - Excreted unchanged in kidneys
- **Uses**
 - HTN
 - Edema

Adverse effects
- Hyponatremia, Hypochloremia, Dehydration
- Hypotension
 - Monitor BP at home
 - Get up slowly
- Hypokalemia
- Hyperglycemia – caution in DM
- Elevated uric acid
- Lipids, Calcium, Magnesium

HCTZ dosing
- Smaller is better these days
- Starting dose 6.25 or 12.5 mg
- Max dose 50 mg/day
- Prefer max of 25 mg/day
- Dirt cheap
- Frequently combined with other antihypertensive medications
Potassium Sparing

- Spironolactone (Aldactone)
 - Aldosterone antagonist
 - HTN and Edema
 - Portal Hypertension/Ascites
 - CHF
- Adverse effects
 - Hyperkalemia
 - Endocrine effects
- Interactions
 - Other Diuretics, Potassium raising drugs

Osmotic Diuretics

- Mannitol
 - 6 carbon sugar
 - Not metabolized
 - Not reabsorbed
 - Increases osmolality of filtrate
- Uses
 - Renal failure prophylaxis
 - ICP
 - IOP

Measures of Renal Function

- BUN
- Creatinine
- Electrolytes: esp. Na, K, Cl
- Estimated GFR: 85 – 135 (insuff <60)
- Creatinine Clearance
- Urine volume
- Urinalysis

Urinalysis

- Color
- Odor
- Protein (uria)
- Glucose (uria)
- Ketones (uria)
- Urobilinogen
- Sp. Grav
- Osmolality
- pH
- RBCs (hematuria)
- WBCs (leuckocyte)
- Casts
- Culture*

Renal and Urinary D/Os

- Infectious (UTI)
 - Cystitis, Pyelonephritis, Urethritis, Prostatitis, Epydidimitis, PID
- Kidney
 - Glomerulonephritis
 - Nephrotic syndrome
- Calculi
- Renal Failures: ATN, Acute, Chronic
Infectious Diseases

- Lower Tract
 - DOC: TMP/SMX
 - Fluoroquinolone
- Upper Tract
 - Pyelonephritis
 - Inflammation of parenchyma
 - Interstitial cystitis
 - "Fake UTI"

Glomerulonephritis

- Immune damage
 - extent of damage
 - etiology
 - extent of changes
- Mechanism
 - Type II
 - Type III

Rhabdomyolysis

- Increased muscle destruction
 - Proteinemia
 - Proteins clog glomerulus
 - May lead to Renal Failure

Renal Failures

- ARF (50% mortality with treatment)
 - Prerenal: blood flow
 - Intrarenal
 - Postrenal: ureteral blockage
- CRI/CRF
 - GFR < 60 l/min
 - ESRD < 15 l/min
 - Dialysis
 - Kidney Transplant
ARF: General
- ↑ Fluid, BUN, Creat, electrolytes
- ↓ Urine output (<400ml/day)
- azotemia: uremic frost
- Acidosis
- Anemia, Agranulocytosis
- Stages: Initiation → Oliguric (1-7 days) → Diuretic → Recovery
- Dialysis if necessary

ARF
- Prerenal
 - Decreased blood flow
 - Renal artery stenosis
 - Hypovolemia, Shock, Heart failure
 - Drugs: e.g. Norepinephrine
- Tx
 - Underlying disease
 - Drugs: Dopamine, mannitol

ARF
- Intrarenal
 - Acute Tubular Necrosis (ATN)
 - Ischemia, toxins, pigments** (contrast)
- Postrenal
 - Kidney stones or strictures
 - Cancer
 - Hydronephrosis
 - Remove blockage

Chronic Kidney Disease
- Major risk factors
 - Diabetes 45%
 - Hypertension 27%
- Prevention
 - Control above diseases
 - ACE Inhibitor/ARB

Manifestations
- Early
 - ↓ Creatinine Clearance
 - ↑ BUN/Creatinine
 - Proteinuria
- Later
 - Fluid retention --> edema, oliguria
 - Anemia --> reduced erythropoietin
 - Acidosis
 - ↑ Electrolytes and other waste products