Blood Pressure and Antihypertensive Medications

Circulation
- Two systems
 - Pulmonary (low pressure)
 - Systemic (high pressure)
 - Aorta 120 mmHg
 - Large arteries 110 mmHg
 - Arterioles 40 mmHg
 - Arteriolar capillaries 30 mmHg
 - Venous capillaries 18 mmHg
 - Venules 16 mmHg
 - Muscular Veins 12 mmHg
 - Central Veins 7 mmHg
 - Right atrium -5 mmHg

Arterial flow
- Pressure gradient
 - Heart generates pressure
 - Arteries contract or dilate to control flow and pressure
- Resistance to blood flow
 - Vessel diameter
 - Vessel length
 - Blood viscosity

Venous Return
- Mostly against gravity
 - Follows pressure gradient (small effect)
 - Constriction of venous SMC
 - Constriction of skeletal muscles
 - One way venous valves

Regulation of Cardiac Output
- CO ~ 5 liters/min
- CO = HR X SV
- Average HR 70 bpm, average SV 70ml
 - CO = 70 X 70 = 4900 ml/min = 4.9 liters/min
Heart Rate
- Autonomic nervous system innervates SA node
 - HR increases
 - Sympathetic stimulation
 - β_1 adrenergic receptors
 - HR decreases
 - Parasympathetic impulses
 - Muscarinic Receptors
 - Vagus nerve

Stroke Volume
- Myocardial contractility
 - Cardiac stretch (Starling’s law of the Heart)
 - Sympathetic stimulation (β_1 receptors)
- Cardiac preload
- Cardiac afterload

Starling’s Law of the Heart
- More stretch
- More contraction
- Up to a point

Preload
- Stretch applied to cardiac muscle prior to contraction
- Stretch is determined by amount of blood in ventricle at the end of diastole
 - End-diastolic volume
 - End-diastolic pressure
- How does preload affect Stroke Volume?

Control of Preload
- Affected by drugs
 - Venous tone
 - Blood volume
- Not affected by drugs
 - Skeletal muscle contractions
 - Resistance to flow in veins (e.g. thrombus)
 - Right atrial pressure
Systemic-Pulmonary Balance

- Right and Left heart **MUST** pump same amount of blood
- Very small disturbance can result in death
 - Fun with Math

Afterload

- Load against which a muscle (myocardium) must contract
- Operationally afterload is blood pressure

Arterial Pressure

- MAP = CO \times TPR
 - CO = ?
 - TPR regulated by dilation/constriction
- Control mechanisms
 - ANS
 - RAAS
 - Kidneys
 - Local

ANS control of MAP

- Adjusts CO and peripheral resistance
- CO = ?
- Arteries
 - Sympathetic stimulation causes constriction
 - α-1 receptors in arteries
 - No parasympathetic innervation
 - Complete removal of sympathetic tone reduces MAP by half

Control of ANS

- Baroceptor reflex
 - Carotid sinus
 - Aortic arch
- When drop in MAP is sensed
 - Constriction of arterioles
 - Constriction of veins
 - Acceleration of heart rate
- Baroceptor resetting

Renin-Angiotensin Cascade

- Angiotensinogen
- Renin
- Angiotensin I
- Angiotensin II
- Bradykinin
- AT_1
- AT_2
- AT_n
- Non-renin (e.g., tPA)
- Non-ACE (e.g., chymase)
- ACE
- Inactive peptides

www.hypertensiononline.org
RAAS

• Angiotensin II
 – Constriction of arterioles
 • Hours
• Aldosterone
 – Retention of sodium and water
 • Days
 – Remodeling of heart and muscle
 • Weeks – Months

Renal Retention of Water

• Ultimate control of blood pressure!!!
 – Goal is to maintain renal perfusion
• Under influence
 – GFR
 – RAAS
 – ADH
 – Natriuretic peptides

Natriuretic Peptides

• Peptides that reduce vascular volume and
 – ANP (atrial) – produced by atrial myocytes
 – BNP (brain) – ventricular myocytes and brain
 • Both cause
 – Natriuresis
 – Diuresis
 – Increase vascular membrane permeability
 – Promote vasodilation (inhibition of sympathetic impulses)
 – CNP (endothelium)
 • vasodilation

Hypertension Etiology

• Primary (essential) hypertension
• Secondary - caused by something else
 – Accuracy of Diagnosis
 – Apnea (obstructive sleep)
 – Aldosteronism
 – Bruit (renal)
 – Bad kidneys
 – Catecholamines
 – Coarctation of Aorta

Hypertension Pathogenesis

• Disease of degree
• Hypertension begets hypertension
• End organ damage
 • Heart
 • Brain
 • Kidneys
 • Arteries
 • Eye

Hypertension Etiology

• Secondary Hypertension – continued
 – Cushing’s Syndrome
 – Drugs
 – Diet
 – Erythropoietin (excess)
 – Endocrine disorders
Hypertension Pathogenesis

- Arteries
 - Higher pressure causes physical damage
 - Scars elastic arteries
 - Increased risk for atherosclerosis
 - Turbulent blood flow – decreases endothelial function
 - Pressure causes more blood particles to enter intimal space
 - Resetting of baroceptors – causes body to think hypertension is normal
- Heart
 - Ventricular hypertrophy
 - Vicious cycle
 - Results in smaller chambers → less Cardiac output
 - Less output → has to work harder
 - Works harder → hypertrophies more
 - More at risk for ischemia
 - More vulnerable to coronary artery disease
- Brain
 - Increased risk of atherosclerotic stroke
 - Increased risk of hemorrhagic stroke
- Kidney
 - Glomerulus is artery, not capillary
 - Increased pressure causes increased GFR
- Eye
 - Retinal arteries sensitive to pressure damage

Hypertension Clinical Manifestations

- The Silent Killer
 - DUN DUN DUN DUN
 - Headache
 - Double vision
 - Lightheadedness
 - Nose bleeds
 - Anxiety
 - Palpitations
 - Sweating
 - Increased urine output
 - Weakness
 - Hematuria
 - Retinal changes
 - Hyperemic ears and mucous membranes
 - Hyperemic conjunctiva
 - Subconjunctival bleed

Approaches to Hypertension Treatment

- Inhibit Sympathetic impulses
 - Inhibit Cardiac contractility and heart rate
 - Inhibit vasoconstriction
- Inhibit RAAS
- Inhibit vasoconstriction
- Inhibit Renal retention of water

Antihypertensive Classes

- Diuretics – Inhibit Renal Retention
- Beta blockers – inhibit heart sympathetic
- Alpha-1 blockers – inhibit artery sympathetic
- Alpha-2 agonist – inhibit both sympathetic
- Calcium channel blockers – inhibit cardiac and/or arterial muscle constriction
- ACE inhibitors – inhibit RAAS
- ARBs – inhibit RAAS
- Direct vasodilators – self explanatory