Coronary Artery Disease, Angina and MI

Coronary Artery Disease

- Most CAD nothing more than Atherosclerosis in the coronary arteries
- Chronic leads to angina pectoris
- Acute is MI
 - 700,000 new MIs in U.S.
 - 500,000 recurrent MIs in U.S.

Risk Factors

- Major nonmodifiable
 - Age/gender
 - Family hx
- Major modifiable
 - Dyslipidemia
 - Hypertension
 - Smoking
 - DM, insulin resistance
 - Obesity
 - Sedentary
 - Atherogenic diet
- Nonconventional
 - HS CRP
 - Homocysteine
 - Lp(a)

Coronary Arteries

- Coronary Arteries surround and then penetrate the heart muscle
 - Right coronary artery (RCA) (back of heart)
 - Left (Main) coronary artery
 - Left circumflex (Side)
 - Left anterior descending (Front)
Myocardial Ischemia

- Blood flow must be impeded before heart metabolism is affected
 - Absolute
 - Relative
- Causes
 - Atherosclerosis, Vasospasm
 - Hypotension, Arrhythmias, Anemia, V/Q

Supply/Demand Considerations

- Oxygen supply
 - Cardiac output
 - Hemoglobin levels
 - Respiratory function
 - Fitness of muscle
- Oxygen demand
 - Work of the heart
 - Contractility
 - HR
 - Hypertrophy of the heart

Myocardial Ischemia

- Myocardium becomes ischemic within 10 seconds of coronary occlusion
- **Working** cells remain viable for up to 20 minutes
 - Anaerobic mechanisms kick in
 - Lactic acid
 - Free radical damage, esp after reperfusion

Cardiac Ischemia Manifestation

- Stable angina
 - Chronic obstruction
 - Chest pain with exertion
 - May radiate, may have diaphoresis, SOB, pallor
 - Relief with rest or nitrates
- Prinzmetal angina
- Silent ischemia
- Unstable angina
 - May become a myocardial infarction

Evaluation

- H&P
- Lipids, BP, risk factor assessment
- ECG
- Stress test
- Angiography
- Unstable angina
 - Cardiac enzymes (rule in/out for MI)

Treatment for Stable Angina

- Drug
 - Nitrates
 - Beta blockers
 - Calcium Channel Blockers
 - Atherosclerotic disease tx (HTN, Lipids)
- Surgery
 - Bypass
 - PCI (PTCA, Stent)
 - Experimental
Acute Coronary Syndrome

- Unstable Angina – reversible ischemia
 - Rupture of an unstable plaque
 - Clots spontaneously resolve over time
 - Damage depends on size of clot and rate of dissolution vs. rate of clot formation
 - Myocardial infarction

MI Pathophysiology

- Plaque rupture --> Clotting cascade active
- Thrombus occludes vessel
- Myocardium becomes hypoxic
 - Shift to Anaerobic Respiration
 - Waste products release/hypoxic injury
 - Cardiac output impaired
 - Norepinephrine/Epinephrine Release
 - Renin release

Myocardial Changes

- Myocardial stunning
 - Temporary loss of contractility that persists for hours to days
- Myocardial hibernation
 - Chronically ischemic; myocytes are hibernating to preserve function until perfusion can be restored
- Myocardial remodeling
 - Loss of contractility mediated by Ang II, catecholamines, and inflammatory cytokines

Ischemic Morphology

- Increased O2 demand: epinephrine, RAAS
- Hypoactive wall/Necrosis
 - Transmural
 - Subendocardial
- Conductile problems
 - PVCs
 - Dysrhythmias

ECG changes

- Conductile cells of heart are most sensitive to hypoxia
- Classic: T-wave inversion, ST-elevation, Q waves
- Non-Q wave MI: no Q waves, possibly normal ST segment
- R/O CANNOT be made with ECG alone!!!
MI Manifestations

- **Prodromal**
 - Symptoms usually appear 24-72 hours before
 - Malaise, Tiredness, Weakness, fatigue
 - Visual disturbance

- **Acute Phase**
 - Symptoms: Chest Pain, Dyspnea, Nausea, Diaphoresis, Weakness, fatigue, anxiety
 - Signs: Gray/ashen, gasping, clutching, loss of consciousness, confused, ECG changes, tachycardia, tachypnea

Eval & Tx

- ECG
- Cardiac Enzymes X 4
 - If Ruled in
 - Anticoagulation, antiplatelet
 - Thrombolytic Therapy
 - Cath lab, Emergency bypass
 - If Ruled out
 - Stress test
 - Angiogram
- MONA: Morphine, O₂, Nitrates, ASA

Nitroglycerine

- **Vasodilating actions**
 - Primarily acts on veins and large arteries
 - Uptake by VSM cells and converts to active form: NO
- **Therapeutic uses:** Stable Angina
 - Decreases preload → decreases contraction → oxygen demand
 - Does not dilate coronary arteries

Nitrates

- **Kinetics**
 - Highly lipid soluble: can be given PO, IV, SL, transdermal
 - Rapid inactivation by organic nitrate reductases
 - Half-life 5 – 7 minutes
 - PO: most drug is destroyed in liver before reaching systemic circulation
- **Adverse Effects**
 - Headache
 - Orthostatic Hypotension
 - Reflex tachycardia

- **Interactions**
 - Other hypotensive drugs
 - Beta blockers, verapamil, diltiazem
 - Sildenafil (Viagra) – life threatening: 25 mmHg drop
- **Tolerance**
 - Most common in high dose, continuous therapy
 - Prevent by using lower dose intermittent therapy: 8 hour drug free time
Nitrates

- Preparations
 - Sublingual: works in 1 – 3 minutes; lasts an hour; expires within 6 months of opening
 - Translingual spray
 - Topical Ointment
 - Transdermal patch
 - PO Sustained release capsules or tablets: higher doses d/t first pass effect (isosorbide mononitrate, dinitrate)
 - IV infusion: glass bottle, special (vented) tubing

- Nursing implications
 - Check BP before and after administering
 - Assess for headache
 - Discontinue slowly if patient has been on it for a while

Immediate Post MI Tx

- Most common cause of death within 72 hours of MI is ________________
 - Must be monitored
- Reduce myocardial workload
- Prevent Remodeling
- Reduce chances of reocclusion
- Reduce oxidative stress (reperfusion injury)

Post MI Treatment

- Lifestyle
 - Diet
 - Exercise – Cardiac Rehab
 - Stress management

- Drugs
 - Antiplatelet: ASA, clopidogrel, persantine
 - Beta blocker
 - Statin medication
 - Treat risk factors (HTN, lipid, smoke, etc.)
 - Sometimes coumadin

Post MI Evaluation

- Stress test
- Angiography
- Symptoms

Clot Review

- Platelet aggregation
 - Become sticky
 - Activate GP IIb/IIIa receptors
 - Chemicals
 - Prostaglandins
 - Thromboxanes
 - ADP

- Clot Stabilization
 - Activation of fibrinogen
 - Binds to GP IIb/IIIa
 - Chemicals
 - Clotting cascade → Thrombin → Fibrinogen activation
Drugs

- Antiplatelet
 - ASA (prostaglandin)
 - Clopidogrel (ADP)
 - Integriin (GP IIb/IIIa)
- Anti Clotting factors
 - Heparins (intrinsic)
 - UF Heparin
 - LMWH
 - Fondaparinux (intrinsic)
 - Warfarin (extrinsic)

Anticoagulant Monitoring

- Intrinsic \(\rightarrow\) PTT
 - IV Unfractionated heparin only
 - Measure in seconds
- Extrinsic \(\rightarrow\) PT/INR
 - Warfarin only
 - PT: Measure seconds
 - INR: Ratio
 - 1:1 = Normal
 - INR 2 – 3 therapeutic
 - > 4 toxic
 - Exception: mech heart valves 3.5 – 4.5

Dyslipidemia

- Half of all heart attacks occur in persons with elevated cholesterol
- Lipoprotein
 - Lipids, Phospholipids, Cholesterol, Tryglycerides
- Needed for
 - plasma membrane maintenance
 - Sterol hormones
 - Bile acids
 - Skin (water resistance)

Cholesterols

- Sources of cholesterol
 - Dietary absorption (exogenous)
 - Synthesis of new cholesterol (endogenous)
 - Increased dietary consumption inhibits synthesis
 - Fat substrates
- Triglycerides
 - Storage form of lipids long term storage
 - Adipose tissue
Plasma Lipoproteins

- **Function:** carrier molecules
- **Structure**
 - Hydrophobic Core
 - Hydrophillic shell
 - Phospholipids
 - Apolipoproteins
 - Recognition sites for receptors
 - Activate enzymes
 - Increase structural stability
 - A-I, A-II, B-100

Cholesterol Cycle

- **Chylomicrons**
 - Lipid packages absorbed from intestine
 - Transported to liver
- **Liver manufactures**
 - VLDL: triglycerides + protein
 - LDL: cholesterol + protein
 - HDL: phospholipids + protein
 - Lipoprotein(a) [Lp(a)]

VLDL

- one B-100 apolipoprotein
- triglyceride core
- deliver triglycerides to muscle and adipose
- Clinical significance
 - Accounts for nearly all triglycerides in blood
 - Normal triglyceride level is <150 mg/dl
 - >150 associated with Metabolic syndrome
 - >400 - 500 associated with pancreatitis

LDL

- One B-100 apolipoprotein
- Cholesterol core
- Deliver cholesterol to nonhepatic tissues
 - Cells that need cholesterol endocytose the LDL molecule
 - If more cholesterol is needed more LDL receptors are produced
- Clinical significance
 - Direct correlation with heart disease
 - 25% reduction of elevated LDL correlated with up to 50% reduction in MI risk

HDL

- Contain apolipoprotein A-I, or A-I and A-II
- Cholesterol core
- Transport cholesterol back to liver
- Clinical Significance
 - Promote cholesterol removal
 - Low cholesterol is associated with increased risk of atherosclerosis
 - Apparently only A-I HDL is cardioprotective
 - Subtype analysis
Role of Cholesterol in Atherosclerosis

- LDL is benign until oxidized in subendothelial (intimal) space
- Oxidized LDL
 - Attract monocytes and promote differentiation to macrophages
 - Inhibit macrophage mobility: chronic inflammation
 - Promote uptake by macrophages
 - Are cytotoxic: damage endothelial cells and contribute to inflammation

Dyslipidemia

- Imbalance in proportion of lipoproteins
- Primary
- Secondary
 - DM
 - Hypothyroidism
 - Pancreatitis
 - Renal nephrosis

Dyslipidemia Tx Goals

- Total cholesterol
 - >240 high
 - 200 – 240 gray zone
- LDL
 - <160 high
 - <130 depending on risk factors
 - <100 depending on risk factors
- HDL
 - > 40 for men; 50 for women low
- Triglycerides
 - < 150 high

Determinants of Treatment Goals

- Several schemes
 - Number of CAD risk factors
 - Ten year Framingham risk score
 - CHD equivalent
 - Diabetes
 - Other atherosclerotic diseases (PAD, AAA, carotid atherosclerosis

Treatment

- TLC
 - Diet
 - Weight Control
 - Exercise
 - Smoking Cessation (also helps HDL)
- Drug Therapy
 - Primary goal is lower LDL
 - Secondary targets
 - Metabolic syndrome
 - Lower Triglycerides
 - Raise HDL

Cholesterol Medications

- See table 48-7
- Statins
- Bile Acid sequestrants
- Fibrates
- Niacin (Nicotinic acid)
- Zetia
Statins

- **Mechanism of action**
 - Inhibits HMG-CoA reductase
 - Causes increase in hepatocyte LDL receptors
- **Therapeutic effects**
 - LDL, HDL, VLDL
 - Nonlipid effects
 - Plaque stabilization
 - Reduction of plaque inflammation
 - Slow coronary artery calcification
 - Improve endothelial function
 - Enhance vasodilation
 - Reduce risk of MI
 - Reduce risk of thrombosis
- **Treating Heart Disease or treating Cholesterol**
 - Secondary prevention
 - Primary Prevention
 - Patients who have normal cholesterol

Indications
- Dyslipidemia
- CHD
- DM

Kinetics
- 30 – 90% absorption depending on agent
- Most statins are completely sequestered in the liver
- Hepatic metabolism followed by bile secretion
- CYP3A4: atorvastatin, lovastatin, simvastatin
 - Interactions
- Renal excretion: only lovastatin, pravastatin, simvastatin (10-20%)
- Timing of dose: at night

Adverse Effects
- Hepatotoxicity: 0.5 – 2% of patients treated > 1 year
- Myopathy: 1 – 5% → Myositis → Rhabdomyolysis: 0.15/million prescriptions
- Risk: age, small frame, frailty, DM/renal dz, high dose statins, fibrates, hypothyroid

Interactions
- Fibrates: myopathy
- Agents that inhibit CYP3A4: cyclosporine, macrolides, azolfungicides, HIV protease inhibitors, grape fruit juice
- Pregnancy: Cat X

Administration considerations
- Timing
 - Meal or snack: lovastatin

Nicotinic Acid (Niacin)

- Raises HDL better than anything else to date
- Mechanism: Decreased production of VLDL, HDL?
- **Therapeutic effects**
 - LDL, HDL, Triglyceride
- **Uses**
 - Risk for pancreatitis
 - Low HDL
 - Niacin deficiency (much lower doses)
- **Adverse effects**
 - Flushing/itching
 - GI upset
 - Hepatotoxic
 - Fast release
 - Sustained release (niacin)
 - Extended release (Niaspan)
 - Rises homocysteine
 - React: hyperglycemia, gouty arthropathy

Bile Acid Sequestrants

- Older: Cholestyramine and Cholestipol
- **Mechanism of Action**
 - Binds to bile acids in intestine
 - Prevents reabsorption of cholesterol
 - Body needs to increase synthesis
 - Increase of LDL hepatocytes
- **Uses**
 - High LDLs
 - Usual in combo with statin
- **Adverse effects**
 - GI complaints: constipation, bloating, nausea
 - Interactions
 - May bind to other drugs and prevent their absorption
 - Vitamin A, D, E, K
 - Thiazides, digoxin, warfarin, some antibiotics
- **Newer**: Cholesterylamin (Welchol)
 - Better tolerated
 - Less interaction with vitamins and drugs

Fibrates

- **Mechanism mostly not understood**
- **Therapeutic effects**
 - HDL
 - LDL
 - Triglycerides
- **Adverse effects**
 - Gallstones
 - Myopathy → rhabdomyolysis
 - Liver damage
- **Interactions**
 - Increased risk of rhabdo when combined with statins
Ezetimibe (Zetia-no class)

- **Mechanism**
 - Blocks cholesterol uptake at the brush border of intestine
- **Therapeutic effects**
 - LDL, HDL, Triglycerides
- **Uses**
 - Lower LDL
 - Adjunct to statins
- **Adverse effects**
 - None?
- **Interactions**
 - Statins
 - Fibrates
- **NO BENEFIT IN PREVENTING CAD**