Respiratory System
Anatomy & Physiology Review

Definitions
- Respiration: movement of oxygen from atmosphere into cells and return of carbon dioxide to atmosphere
- Ventilation: movement of air in and out of the lungs
- External respiration: diffusion of oxygen and carbon dioxide between air and blood in the alveoli
- Internal respiration: Use of glucose energy to form ATP, with or without oxygen

Ventilation
- Nasal and Oral passages (Nose, pharynx, larynx)
- Trachea
- Bronchi
- Bronchioles
- Alveoli: final destination
 - No air movement occurs in alveoli
 - Diffusion only

Nose to Bronchioles
- Lined with ciliated mucous membranes
 - Warm air
 - Mucous
 - Traps fine particles
 - Humidifies air
 - Hairs
 - Trap particles
 - Moves mucous outward
- Larynx
 - Contains vocal cords
 - Epiglottis: protect from food and moisture; cough

Tracheo-Bronchial Tree
- Trachea
 - Semi-rigid incomplete rings of cartilage
 - *ET tube erosion
 - Carina: last ring before branching
 - Heavily innervated: coughing and bronchospasm
- Bronchi
 - Right bronchus: shorter, wider, more vertical
 - Left bronchus: longer, narrower, more horizontal
 - Branch: Lobar bronchi → Segmented bronchi → continue branching to terminal bronchioles (smallest)
Terminal Bronchioles
- End in Acinus (Functional unit of the lung)
 - AKA “primary lobule” 0.5 – 1 cm diameter
 - Respiratory bronchiole
 - Alveolar ducts
 - Terminal alveolar sacs
 - Grapelike clusters of alveoli
 - Separated by septa
 - Communicate via pores (of Kohn)
 - Membrane thinner than an RBC
 - ~300 million in each lung

Alveoli
- Surrounded by capillary network
- Lined with pneumocytes
 - Type I cover 90% of surface
 - Type II produce surfactant
- Alveoli – gas bubble surrounded by capillaries
 - Tend to collapse on expiration d/t surface tension
 - Surfactant reduces surface tension
- Surfactant
 - Production depends on blood flow
 - Stimulated by deep breaths, sighing

Thoracic Cavity
- Two lungs – separated into lobes, and then segments
 - Left lung has 9 segments
 - Right lung has 10 segments
- Pleura – two ply membrane separating lungs from cavity
 - Pleural “space” between membranes does not exist except in pathological situations:
 - Effusion
 - Inflammation
 - Pleura maintain negative pressure within the cavity

Pulmonary Circulation
- Oxygenated blood to nourish lungs
 - Bronchial artery
 - Large bronchial veins empty into azygos system and return to vena cava
- Unoxgenated blood to become oxygenated
 - Pulmonary artery
 - Small bronchial veins empty into pulmonary veins and wind up mixing with oxygenated blood ~2-3%
 - Low pressure, low resistance
Pulmonary Pressure
- Pulmonary network extreme distensible
 - Can accommodate more CO without requiring more pressure
- 25/10 mmHg
- MAP 15Hg
- Colloid oncotic pressure is 25mmHg

It's all About Control
- Ultimately about making respiratory muscles contract
 - Muscles are under autonomic and somatic innervation
 - Autonomic fibers originate in “Respiratory Center”
 - Located in Pons and Medulla
 - Respond to changes in central Chemoreceptors
 - Partial pressure of CO2 (PaCO2)
 - Changes in pH
 - Secondary reductions in PaO2 (must fall from 90-100 to 60mmHg)
 - Stretch reflex

Control of Airways
- Bronchials lined with smooth muscle
 - Parasympathetic tone (Vagus nerve)
 - Bronchoconstriction
 - Increased mucous production
 - Sympathetic stimulation (beta-2 receptors)
 - Relaxation of smooth muscle
 - Bronchodilation
 - Less mucous production
 - Noncholinergic, nonadrenergic inhibitory system
 - Bronchodilation
 - Nitric oxide production

Defenses of Resp Tract
- Mechanical
 - Gag reflex
 - Turbinates
 - Mucociliary escalator
 - Cough reflex
- Chemical
 - Mucous contains IgA, neutrophils, interferons
 - Alveolar macrophages and Surfactant (opsonins)

Physiologic Considerations
- Gas exchange (O2 & CO2 primarily)
 - Ventilation
 - Transportation
 - Diffusion across alveolar membrane
 - Pulmonary blood distribution
 - Chemical/physical interactions with blood
 - Internal respiration

Ventilation
- Movement of air in and out of lungs
 - Forced by bellows action of resp muscles
 - Creating partial vacuum and then contraction
 - Diaphragm: descends, expanding thoracic cavity
 - Sternoideomastoid: lifts sternum
 - Serratus, scalen, external intercostals: lift ribcage
- Measuring Ventilation
 - Pulmonary Function Tests
PFTs

- Measures of Volume
- Measures of Flow
 - FEV1
 - Peak Flow

Ventilation-Perfusion Relationship

- V/Q ratio (normally 0.8)
 - V: Rate of Ventilation (4 L/min on average)
 - Q: Output of Heart (5 L/min)
- Extreme imbalances:
 - Dead space (normal ventilation, no perfusion)
 - V/Q = infinity
 - Shunt unit (no ventilation, normal perfusion)
 - V/Q = 0
 - Silent unit (no ventilation, no perfusion)
 - V/Q = 0

Transport in Blood

- Oxyhemoglobin: reversible reaction
 - Dependent on PaO2 (arterial partial pressure)
 - Dependent on PAO2 (alveolar partial pressure of Oxygen)
 - Dependent on solubility of O2 in plasma
 - Dependent on pH
 - Temperature

- Carbon dioxide usually travels in buffered state as Carbonic Acid
 - CO2 + H2O \leftrightarrow H+ + H3O+

Assessment of Respiratory System

- Ventilation measurements
 - Breaths per minute
 - PFTs
- V/Q scans
- Blood Gases
 - PO2, PCO2, pH
- Hemoglobin
 - Amount and saturation