Pulmonary Disorders

- ARDS
- Postoperative Respiratory Failure
- Obstructive Pulmonary Disease
- Respiratory Tract Infections
- Pulmonary Vascular Disease
- Respiratory Neoplasms

ARDS (Acute Respiratory Distress Syndrome)

- Fulminant respiratory failure
 - Acute lung inflammation
 - Diffuse alveocapillary injury
 - 30% of all ICU admissions
 - Current mortality < 40%
- Etiology:
 - Sepsis & Multiple trauma (esp w/transfusions)
 - Pneumonia, burns, aspiration, CABG, pancreatitis, drug overdose, smoke, O2, DIC

ARDS Pathophysiology

- Starts with alveolocapillary membrane damage and pulmonary edema
 - Direct damage
 - Indirectly (immune mediators)
- Final: Massive inflammatory response
 - Neutrophils, Macrophages, complement, endotoxin, interleukin-1, TNF-α

Sequence

- Alveolocapillary membrane damage
- Platelet aggregation & thrombus
 - Attracts Neutrophils
 - Neutrophils release inflammatory mediators
 - Causes further damage, and increases capillary membrane permeability
 - Pulmonary edema & hemorrhage
 - Vasoconstriction → Pulmonary hypertension
 - Uneven → V/Q mismatching

Meanwhile, back at the ranch...

- Surfactant production is interrupted
- Compliance is impaired
- Ventilation is impaired
- Results in
 - Right to left shunting
 - Increased work of breathing
 - 24 – 48 hours: hyaline membrane forms
 - 7 days: progressive fibrosis destroys lung

Associated Problems

- SIRS
 - Systemic Inflammatory Response Syndrome
- MODS
 - Multi-organ Dysfunction Syndrome
- Death results from combination of Resp Failure and MODS
ARDS Manifestations

• Classic
 – Rapid, shallow, breathing
 – Resp alkalosis
 – Marked dyspnea
 – Hypoxemia
 – Diffuse alveolar infiltrates (x-ray)

• As progresses
 – Diffuse crackles, metabolic acidosis, hypotension, decreased CO, death

ARDS Eval & Tx

• DX: exam, blood gas, x-ray
 – Criteria
 • Hypoxemia, bilat x-ray infiltrates, exclusion of cardiogenic pulmonary edema
 – TX: must catch early
 – Supportive therapy
 – Prevention of complications
 – You’ll learn a lot more about this is Critical Care

Post-Operative Respiratory Failure

• Risk:
 – Any surgery involving chest or thorax, or general anesthesia
 – Smokers or other lung disease
 – Chronic Renal Failure, ↓ cardiac reserve

• Common
 – Atelectasis, pneumonia, pulmonary edema, pulmonary embolism

• Prevention, Prevention, Prevention
 – TCDB, early ambulation, Incentive, O2

Obstructive Pulmonary Diseases

• Diseases that impair airflow
 – Upper or lower tract
 – Increase the work of breathing
 – Typically expiration is harder than inspiration
 • Results in hyperinflated lungs
 • Symptom: dyspnea
 • Sign: wheezing

• Asthma
• Emphysema
• Chronic Bronchitis

Asthma

• Acute, intermittent, or chronic
• Can occur at any age
 – Most common in children (50% of onset)
 – Mortality declining, but incidence rising
 – Familial disease, multiple gene involvement
 • Interleukins 4 & 5, IgE, eosinophils, mast cells, beta adrenergic receptors, bronchial hyperrespons
 – Risk factors: allergen exposure, urban, air pollution, cigarette smoke, hygiene,

Asthma Classification

• Older schema, based on underlying pathophysiology
• Newer classification based on symptoms and severity
 – Mild Intermittent
 – Mild Persistent
 – Moderate Persistent
 – Severe Persistent
Mild Intermittent Asthma

- **Rule of 2's**
 - Symptoms of cough, wheeze, chest tightness or difficulty breathing < twice a week
 - Nighttime symptoms < twice a month
 - Refill albuterol < twice per year
- Flare-ups-brief, but intensity may vary
- Lung function test FEV1 equal to or above 80 percent of normal values
- Peak flow less than 20 percent variability AM-to-AM or AM-to-PM, day-to-day.

Asthma Pathophysiology

- Inflammation → bronchial hyperresponsive
 - IgE & irritants → mast cell degranulation
 - Release of inflammatory mediators
 - Histamine, Leukotrienes, Prostaglandins
 - Release of chemokines
 - Infiltration by neutrophils, eosinophils, lymphocytes

Asthma Pathophysiology

- Inflammatory response
 - Bronchospasm
 - ↑vascular permeability → airway edema
 - Increased mucous production (thick)
 - Impaired mucociliary function
 - Thickening of airway walls
 - Muscarinic receptor stim → increased acetylcholine activity → increased contraction
 - Epithelial destruction by eosinophils (collateral damage)

Asthma Pathophysiology

- End result is airway obstruction
 - Bronchial hyperresponsiveness
 - Inflammatory thickening of airway
- Impaired airflow
 - Hyperinflation distal to obstruction
 - Hyperventilation
 - Decreased perfusion to hyperinflated areas
 - Uneven V/Q relationships
 - Hypoxemia without hypercapnia
Asthma Pathophysiology

- If uncorrected
 - Hyperinflation of resp units results in hyperexpansion of lungs
 - Resp muscles disadvantaged
 - Hypercapnia, resp acidosis
 - Sign of resp failure

Asthma Clinical Manifestations

- Full remission: asymptomatic and PFTs normal
- Partial remission: asymptomatic but PFTs abnormal → sign of impending flare?
- Asthma Attack
 - Slow onset acute asthma: days
 - Often after URI
 - Hyperacute asthma: minutes to hours
 - Often triggered by stress or exercise or allergens

Asthma Attack S/S

- Dyspnea & Wheezing
- Breath sounds decreased
- Peak flow early in attack
- If O2 sat < 90 → ABGs
- Early: nonproductive cough, tachycardia, tachypnea, accessory muscle use
- Resolving: thick stringy mucus

Asthma: Eval & Tx

- Spirometry
 - Decreased FEV1 and FVC
 - Increased FRC & TLC
- Daily Peak flow (RECORD & GRAPH)
- Treatment
 - Avoid triggers (foods, airborne particles, etc.)
 - Get rid of carpets, vacuum regularly
 - Pharmacological Treatment

Asthma Treatment

- Acute treatment:
 - O2, bronchodilation, steroids, hospitalization?
- Chronic treatment:
 - Inflammatory reduction
 - Bronchodilation
 - Mucus reduction
- Status asthmaticus
 - Failure of conventional therapy to relieve attack
 - Life threatening
Chronic Obstructive Pulmonary Disease

- Disease state characterized by airflow limitation that is not fully reversible.
 - Progressive
 - Abnormal inflammatory response
- Mixture of
 - Chronic Bronchitis
 - Emphysema
- Etiology
 - Smoking
 - Occupational exposure, air pollution, genetics

Chronic Bronchitis

- Hypersecretion of mucus and chronic productive cough > 3 month/year for at least 2 consecutive years
- More prevalent during winter
- 20x more incidence in smokers
- More common in elderly
- Associated with repeat infections

Chronic Bronchitis Patho

- Irritants normally cause ↑ mucus secretion
- In CB, irritants also cause
 - Hyperplasia and hypertrophy of goblet cells
 - Thicker, stickier mucus
 - Bacteria love this stuff and colonize it
 - Cilia function impaired, reducing clearance
- End result increased likelihood of infection
- Bronchial walls become inflamed leading to bronchospasm
- Narrowed airway, difficulty expiring

CB Clinical Manifestations

- Decreased exercise tolerance
- Wheezing
- Dyspnea
- Productive cough: Mucus plugs
- Progression
 - Hypercapnia, Hypoxemia
 - Polycythemia and Cyanosis
 - Later, pulmonary hypertension → cor pulmonale
 - Disability and Death

Eval & Tx

- H&P, X-ray, PFT, ABG
- Best treatment? Prevention!!!!
 - Not reversible
 - Stopping smoking can prevent progression
- Tx
 - Bronchodilators, expectorants, anticholinergic
 - Chest PT
 - Antibiotics
 - Low O2
 - Steroids

Emphysema

- Permanent enlargement of acini
- Destruction of alveolar walls w/o fibrosis
- Major limitation to airflow is loss of elasticity due to lung tissue destruction
- Mild is normal with aging (slow decline)
- Earlier and more severe almost always associated with smoking (2° emphysema)
- 1° emphysema (1-2%) genetic disorder
Emphysema Etiology

- Inability to inhibit lung proteolytic enzymes
 - Structural proteins are destroyed
- Primary Emphysema
 - α₁-antitrypsin deficiency (plasma protein responsible for inhibiting proteolytic enzymes)
- Secondary
 - Inhaled toxins inhibit antiproteases
 - Smoking, air pollution, etc.

Emphysema Patho

- Inhaled toxins
 - Epithelial inflammation and infiltration by leukocytes
 - Inflammatory cytokines inhibit endogenous antiproteases (including α₁-antitrypsin)
- Destruction of alveoli - Elastin proteolysis in alveoli septa
 - Decrease surface area → lowered perfusion
 - Capillary destruction → pulmonary HTN
 - Decreased elasticity → difficulty expiring
 - Increased air in acinus → hyperinflation

Emphysema Patho

- Air pocket formation
 - In lung: bullae
 - Adjacent to pleura: blebs
- Location Location Location
 - Centriacinar: mostly in upper lobes
 - More common with chronic bronchitis
 - Panacinar: diffuse, throughout lungs
 - More common in primary emphysema

Clinical Manifestations

- DOE → dyspnea at rest
- Little coughing or sputum unless combined with CB
- Usually thin, tachypneic, prolonged expiration, accessory muscle use
- Barrel chested
- Hyperresonant percussion
Emphysema Eval & Tx

- PFT (TLC can be 2x normal)
- CXR
- ABGs
- Acute Tx
 - CXR, WBCs, O2, Oral Steroids, ABX
- Chronic
 - Stop smoking, bronchodilators, anticholinergic
 - O2 low doses

Respiratory Tract Infections

- Rhinitis
- Sinusitis
- Pharyngitis
- Laryngitis
- Bronchitis
- Pneumonia

Pneumonia

- 6th leading cause of death in U.S.
- Risk factors: age, immunocompromised, lung disease, alcoholism, smoking, intubation, malnutrition, immobilization
- Causative organism: bacteria, fungus, protozoa, parasites
- Source
 - CAP (community acquired pneumonia)
 - Nosocomial

Common Causative agents

<table>
<thead>
<tr>
<th>CAP</th>
<th>Nosocomial</th>
<th>Immunocomp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strep pneumoniae</td>
<td>Pseudomonas</td>
<td>Pneumocystis carinii</td>
</tr>
<tr>
<td>Haemophilus influenza</td>
<td>Staph aureus</td>
<td>(gorovic)</td>
</tr>
<tr>
<td>Influenza Virus</td>
<td>Klebsiella pneumonia</td>
<td>Mycobacterium</td>
</tr>
<tr>
<td>Legionella</td>
<td>E. Coli</td>
<td>tuberculosi</td>
</tr>
<tr>
<td>Chlamydia pneumoniae</td>
<td></td>
<td>Atypical mycobacteria</td>
</tr>
<tr>
<td>Moraxella catarrhalis</td>
<td></td>
<td>Fungus</td>
</tr>
<tr>
<td>Uncommon:</td>
<td></td>
<td>Respiratory viruses</td>
</tr>
<tr>
<td>Pneumonic plague</td>
<td></td>
<td>Protozoa</td>
</tr>
</tbody>
</table>

Pneumonia

- Aspiration of oropharyngeal contents or inhalation of infectious particles, or bacteremia
 - Must overcome mucociliary escalator, cough reflex, alveolar macrophage
 - In small numbers, macrophage can eliminate invader without causing inflammation
 - In larger numbers, inflammatory response is set off as organisms colonize lung
 - Localized filling of acini with exudate cellular debris: consolidation
Pneumonia Manifestations
- Usually preceded by URI or flu
- Cough (productive or unproductive)
- Dyspnea, fever
- Other: malaise, fatigue, chills, pleuritic pain
- Inspiratory crackles, localized decreased breath sounds, increased tactile fremitus

Eval & Treatment
- CXR (infiltrates: patchy, lobar, diffuse)
- WBC, shift to right or left
- Sputum gram stain and c/s
- Tx
 - Oxygenation & bronchodilation prn
 - Hydration and hygiene
 - Chest therapy
 - Antibiotics as appropriate
 - Gatifloxacin or levofloxacin, ciprofloxacin
 - Ceftriaxone + Azithro or clarithromycin

Pulmonary Vascular Disease
- Pulmonary Embolism
 - DVT, sudden dyspnea, hypotension, shock
 - Risk factor recognition and prevention
 - O2, rapid anti-coagulation, thrombolytic
- Pulmonary hypertension
- Cor pulmonale
 - Right ventricle enlargement

Respiratory Neoplasms
- Oral Cancer
- Lung cancer (13% of all U.S. cancer but 25 – 31% of cancer mortality)
 - Heavy smokers 20x risk
 - Second hand smoke 1.3x risk
- Types of Lung Cancer
 - Non-Small Cell Lung Cancer
 - Squamous Cell (30%), Adenocarcinoma (35-40%)
 - Large Cell Carcinoma (10 – 15%)
 - Small Cell Carcinoma (14%)